Most cited article - PubMed ID 20462411
Patterning of mutually interacting bacterial bodies: close contacts and airborne signals
Spontaneous variation in appearance was studied in bacterial colonies of Serratia marcescens F morphotype1: (i) A defined array of non-heritable phenotype variations does appear repeatedly; (ii) The presence of colonies of different bacterial species will narrow the variability toward the typical F appearance, as if such an added environmental factor curtailed the capacity of colony morphospace; (iii) Similarly the morphospace becomes reduced by random mutations leading to new, heritable morphotypes-at the same time opening a new array of variations typical for the mutant but not accessible directly from the original F morphospace. Results are discussed in context with biphasic model of early morphogenesis applicable to all multicellular bodies.
- Keywords
- Serratia, morphogenesis, mutation, plasticity, self-manifestation,
- Publication type
- Journal Article MeSH
BACKGROUND: Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). RESULTS: Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock - paper - scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a "consortium" whose structure is consistent with the model derived from interaction patterns observed in colonies. CONCLUSIONS: Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of the biosphere. Only later, the newly developing body gets connected to the ecological interactions in the biosphere. Mixed "anlagen" cannot accomplish the first, germ-free phase of development; hence, they will result in the consortium of small colonies. To map early development and subsequent interactions with the rest of the biospheric web, simplified gnotobiotic systems described here may turn to be of general use, complementing similar studies on developing multicellular eukaryots under germ-free or gnotobiotic conditions.
- MeSH
- Escherichia coli growth & development physiology MeSH
- Culture Media chemistry MeSH
- Microbial Interactions * MeSH
- Serratia growth & development physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Culture Media MeSH