plasticity Dotaz Zobrazit nápovědu
- MeSH
- lidé MeSH
- membránové potenciály MeSH
- neuroplasticita * MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
[Morphological manifestations of the plasticity of synapses]
- MeSH
- dendrity ultrastruktura MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- neuroplasticita * MeSH
- synapse fyziologie ultrastruktura MeSH
- synaptické membrány ultrastruktura MeSH
- synaptické vezikuly ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- lidé MeSH
- nervosvalové spojení fyziologie MeSH
- neuroplasticita * MeSH
- periferní nervy fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Plasticity is a specific endowment of the nervous system to develop, to react or to adjust to the internal and external 'environmental changes, both in the physiological and pathological conditions. Cumulative evidence has revealed the dynamism of the nervous system, based on the balance between the rigidity and plasticity. Different aspects of neuroplasticity can employ common general cellular mechanism. Effects of plasticity can be either positive or negative changes during the development (evolutional plasticity), after the short-term exposition (reactive plasticity), after the long-term or permanent stimuli (adaptational plasticity), and during functional or structural recovery of the damaged neuronal circuits (reparation plasticity). Manifestations of plasticity have probably the same basis, irrespective of a cause, which triggered them, or the brain region where they were accomplished. Activity of neuroplastic processes appears to be especially high in the immature nervous tissue.
- MeSH
- lidé MeSH
- nervový systém embryologie MeSH
- neurony fyziologie MeSH
- neuroplasticita fyziologie MeSH
- regenerace nervu fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- MeSH
- lidé MeSH
- neuroplasticita * MeSH
- periferní nervy fyziologie MeSH
- regenerace nervu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the adult brain, the extracellular matrix (ECM) influences recovery after injury, susceptibility to mental disorders, and is in general a strong regulator of neuronal plasticity. The proteoglycan aggrecan is a core component of the condensed ECM structures termed perineuronal nets (PNNs), and the specific role of PNNs on neural plasticity remains elusive. Here, we genetically targeted the Acan gene encoding for aggrecan using a novel animal model. This allowed for conditional and targeted loss of aggrecan in vivo, which ablated the PNN structure and caused a shift in the population of parvalbumin-expressing inhibitory interneurons toward a high plasticity state. Selective deletion of the Acan gene in the visual cortex of male adult mice reinstated juvenile ocular dominance plasticity, which was mechanistically identical to critical period plasticity. Brain-wide targeting improved object recognition memory.SIGNIFICANCE STATEMENT The study provides the first direct evidence of aggrecan as the main functional constituent and orchestrator of perineuronal nets (PNNs), and that loss of PNNs by aggrecan removal induces a permanent state of critical period-like plasticity. Loss of aggrecan ablates the PNN structure, resulting in invoked juvenile plasticity in the visual cortex and enhanced object recognition memory.
- Klíčová slova
- aggrecan, inhibitory, interneuron, neuronal plasticity, parvalbumin, perineuronal nets,
- MeSH
- agrekany analýza nedostatek genetika MeSH
- buněčné linie MeSH
- extracelulární matrix chemie genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- nervová síť chemie metabolismus MeSH
- neuroplasticita fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové korové centrum chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agrekany MeSH
- MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- nervové receptory fyziologie MeSH
- neurony aferentní fyziologie MeSH
- neuroplasticita * MeSH
- periferní nervy fyziologie MeSH
- regenerace nervu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.
- Klíčová slova
- DNA methylation, microRNA, ocular dominance plasticity, perineuronal net,
- MeSH
- mikro RNA * genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroplasticita genetika MeSH
- oční dominance genetika MeSH
- proteomika MeSH
- zrakové korové centrum * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA * MeSH
- MIRN29 microRNA, mouse MeSH Prohlížeč
In neural computation, the essential information is generally encoded into the neurons via their spiking configurations, activation values or (attractor) dynamics. The synapses and their associated plasticity mechanisms are, by contrast, mainly used to process this information and implement the crucial learning features. Here, we propose a novel Turing complete paradigm of neural computation where the essential information is encoded into discrete synaptic states, and the updating of this information achieved via synaptic plasticity mechanisms. More specifically, we prove that any 2-counter machine-and hence any Turing machine-can be simulated by a rational-weighted recurrent neural network employing spike-timing-dependent plasticity (STDP) rules. The computational states and counter values of the machine are encoded into discrete synaptic strengths. The transitions between those synaptic weights are then achieved via STDP. These considerations show that a Turing complete synaptic-based paradigm of neural computation is theoretically possible and potentially exploitable. They support the idea that synapses are not only crucially involved in information processing and learning features, but also in the encoding of essential information. This approach represents a paradigm shift in the field of neural computation.
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
- Klíčová slova
- Actin cytoskeleton, Cofilin, Dendritic spine dynamics, Depression, General anesthesia, Neuroplasticity,
- MeSH
- anestetika celková * škodlivé účinky MeSH
- celková anestezie škodlivé účinky MeSH
- dendritické trny * MeSH
- mikrofilamenta MeSH
- neuroplasticita MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- anestetika celková * MeSH