Most cited article - PubMed ID 20471849
Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
- Keywords
- Arabidopsis, chlorophyll fluorescence, cytokinin derivative, ethylene, oxidative stress, photosystem II, phytohormone, senescence, wheat,
- MeSH
- Arabidopsis drug effects growth & development metabolism MeSH
- Cytokinins pharmacology MeSH
- Ethylenes metabolism MeSH
- Photosynthesis MeSH
- Plant Leaves drug effects growth & development metabolism MeSH
- Triticum drug effects growth & development metabolism MeSH
- Plant Growth Regulators pharmacology MeSH
- Cellular Senescence * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokinins MeSH
- ethylene MeSH Browser
- Ethylenes MeSH
- Plant Growth Regulators MeSH
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
- Keywords
- antioxidant, antioxidant enzymes, antisenescent, cytokinin, derivative, genes, photosynthesis, plant defence, structure and activity relationship,
- MeSH
- Antioxidants chemistry metabolism MeSH
- Cytokinins chemistry metabolism MeSH
- Flavonoids analysis MeSH
- Photosynthesis MeSH
- Plant Leaves chemistry growth & development physiology MeSH
- Molecular Structure MeSH
- Plants chemistry MeSH
- Plant Development MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Cytokinins MeSH
- Flavonoids MeSH
BACKGROUND AND AIMS: Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. METHODS: The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. KEY RESULTS: Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. CONCLUSIONS: Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.
- Keywords
- Cytokinin, Nicotiana tabacum, abscisic acid, hydrogen peroxide, hypersensitive response, jasmonic acid, lipid peroxidation, non-photochemical quenching, pathogenesis-related proteins, photosynthesis, salicylic acid, stomatal conductance,
- MeSH
- Alkyl and Aryl Transferases genetics MeSH
- Cell Death MeSH
- Chlorophyll metabolism MeSH
- Chloroplasts genetics metabolism MeSH
- Cytokinins genetics metabolism MeSH
- Dexamethasone pharmacology MeSH
- Photosynthesis genetics MeSH
- Plants, Genetically Modified MeSH
- Host-Pathogen Interactions * MeSH
- Plant Leaves cytology genetics physiology MeSH
- Necrosis genetics MeSH
- Oxidative Stress genetics MeSH
- Hydrogen Peroxide metabolism MeSH
- Lipid Peroxidation MeSH
- Plant Stomata physiology MeSH
- Gene Expression Regulation, Plant drug effects MeSH
- Plant Growth Regulators genetics metabolism MeSH
- Nicotiana genetics microbiology physiology MeSH
- Gene Silencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- adenylate isopentenyltransferase MeSH Browser
- Alkyl and Aryl Transferases MeSH
- Chlorophyll MeSH
- Cytokinins MeSH
- Dexamethasone MeSH
- Hydrogen Peroxide MeSH
- Plant Growth Regulators MeSH