Nejvíce citovaný článek - PubMed ID 20554269
Cell proliferation and apoptosis in the primary enamel knot measured by flow cytometry of laser microdissected samples
Apoptosis is an important morphogenetic event in embryogenesis as well as during postnatal life. In the last 2 decades, apoptosis in tooth development (odontogenesis) has been investigated with gradually increasing focus on the mechanisms and signaling pathways involved. The molecular machinery responsible for apoptosis exhibits a high degree of conservation but also organ and tissue specific patterns. This review aims to discuss recent knowledge about apoptotic signaling networks during odontogenesis, concentrating on the mouse, which is often used as a model organism for human dentistry. Apoptosis accompanies the entire development of the tooth and corresponding remodeling of the surrounding bony tissue. It is most evident in its role in the elimination of signaling centers within developing teeth, removal of vestigal tooth germs, and in odontoblast and ameloblast organization during tooth mineralization. Dental apoptosis is caspase dependent and proceeds via mitochondrial mediated cell death with possible amplification by Fas-FasL signaling modulated by Bcl-2 family members.
- MeSH
- apoptóza * MeSH
- kaspasy genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- odontogeneze * MeSH
- signální transdukce * MeSH
- zubní zárodek cytologie embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kaspasy MeSH
Caspases are key enzymatic components of the intracellular apoptotic machinery, and their role in mammalian systems is often studied using fluoromethylketone (FMK) inhibitors. Despite many advantages of such approach, efficiency of the inhibitor and membrane permeability speed are often questioned. This work therefore focuses on an exact evaluation of caspase-3 FMK inhibition dynamics in camptothecin-induced mesenchymal micromasses. Two parameters of caspase-3 FMK inhibitor were investigated: first, the stability of the inhibitory potential in the time course of cultivation and, simultaneously, the dynamics of caspase-3 FMK inhibition after camptothecin-induced apoptosis peak. A photon-counting chemiluminescence approach was applied for quantification of active caspase-3. The sensitivity of the photon-counting method allowed for evaluation of active caspase-3 concentration in femtogram amounts per cell. The inhibitor penetrated the cells within the first minute after its application, and the peak of caspase-3 started to decline to the blank level after 30 min. The inhibitory effect of the FMK inhibitor was unchanged during the entire 48 h of cultivation.
- MeSH
- apoptóza účinky léků MeSH
- inbrední kmeny myší MeSH
- inhibitory kaspas farmakologie MeSH
- kamptothecin farmakologie MeSH
- kaspasa 3 metabolismus fyziologie MeSH
- kultivované buňky MeSH
- luminiscenční měření metody MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory kaspas MeSH
- kamptothecin MeSH
- kaspasa 3 MeSH