Nejvíce citovaný článek - PubMed ID 20624973
Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named "Ca. Nitronereus thalassa", represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, "Ca. Nitronereus thalassa" harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, "Ca. Nitronereus thalassa" appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.
- MeSH
- amoniak metabolismus MeSH
- Bacteria * MeSH
- dusitany * metabolismus MeSH
- fylogeneze MeSH
- genomika MeSH
- nitrifikace MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- dusitany * MeSH
Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments. Here, we review the literature and identify knowledge gaps on the metabolic diversity, ecological distribution, and physiological adaptations of nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying microorganisms depend on a suite of physiological adaptations to maintain pH homeostasis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a membrane potential at pH extremes. We also recognize the broader implications of their activities primarily in acidic environments, with a focus on agricultural productivity and nitrous oxide emissions, as well as promising applications in treating municipal wastewater.
- Klíčová slova
- archaea, metabolism, nitrification,
- MeSH
- amoniak * metabolismus MeSH
- Bacteria metabolismus MeSH
- ekosystém MeSH
- nitrifikace * MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- amoniak * MeSH
Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the canonical nitrite oxidiser Nitrospira moscoviensis oxidises hydrogen (H2) below atmospheric levels using a high-affinity group 2a nickel-iron hydrogenase [Km(app) = 32 nM]. Atmospheric H2 oxidation occurred under both nitrite-replete and nitrite-deplete conditions, suggesting low-potential electrons derived from H2 oxidation promote nitrite-dependent growth and enable survival during nitrite limitation. Proteomic analyses confirmed the hydrogenase was abundant under both conditions and indicated extensive metabolic changes occur to reduce energy expenditure and growth under nitrite-deplete conditions. Thermodynamic modelling revealed that H2 oxidation theoretically generates higher power yield than nitrite oxidation at low substrate concentrations and significantly contributes to growth at elevated nitrite concentrations. Collectively, this study suggests atmospheric H2 oxidation enhances the growth and survival of NOB amid variability of nitrite supply, extends the phenomenon of atmospheric H2 oxidation to an eighth phylum (Nitrospirota), and reveals unexpected new links between the global hydrogen and nitrogen cycles. Long classified as obligate nitrite oxidisers, our findings suggest H2 may primarily support growth and survival of certain NOB in natural environments.
- MeSH
- amoniak metabolismus MeSH
- Bacteria MeSH
- dusitany * metabolismus MeSH
- nitrifikace MeSH
- oxidace-redukce MeSH
- proteomika MeSH
- vodík * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- dusitany * MeSH
- vodík * MeSH
Nitrite-oxidizing bacteria (NOB) are ubiquitous and abundant microorganisms that play key roles in global nitrogen and carbon biogeochemical cycling. Despite recent advances in understanding NOB physiology and taxonomy, currently very few cultured NOB or representative NOB genome sequences from marine environments exist. In this study, we employed enrichment culturing and genomic approaches to shed light on the phylogeny and metabolic capacity of marine NOB. We successfully enriched two marine NOB (designated MSP and DJ) and obtained a high-quality metagenome-assembled genome (MAG) from each organism. The maximum nitrite oxidation rates of the MSP and DJ enrichment cultures were 13.8 and 30.0 μM nitrite per day, respectively, with these optimum rates occurring at 0.1 mM and 0.3 mM nitrite, respectively. Each enrichment culture exhibited a different tolerance to various nitrite and salt concentrations. Based on phylogenomic position and overall genome relatedness indices, both NOB MAGs were proposed as novel taxa within the Nitrospinota and Nitrospirota phyla. Functional predictions indicated that both NOB MAGs shared many highly conserved metabolic features with other NOB. Both NOB MAGs encoded proteins for hydrogen and organic compound metabolism and defense mechanisms for oxidative stress. Additionally, these organisms may have the genetic potential to produce cobalamin (an essential enzyme cofactor that is limiting in many environments) and, thus, may play an important role in recycling cobalamin in marine sediment. Overall, this study appreciably expands our understanding of the Nitrospinota and Nitrospirota phyla and suggests that these NOB play important biogeochemical roles in marine habitats.IMPORTANCE Nitrification is a key process in the biogeochemical and global nitrogen cycle. Nitrite-oxidizing bacteria (NOB) perform the second step of aerobic nitrification (converting nitrite to nitrate), which is critical for transferring nitrogen to other organisms for assimilation or energy. Despite their ecological importance, there are few cultured or genomic representatives from marine systems. Here, we obtained two NOB (designated MSP and DJ) enriched from marine sediments and estimated the physiological and genomic traits of these marine microbes. Both NOB enrichment cultures exhibit distinct responses to various nitrite and salt concentrations. Genomic analyses suggest that these NOB are metabolically flexible (similar to other previously described NOB) yet also have individual genomic differences that likely support distinct niche distribution. In conclusion, this study provides more insights into the ecological roles of NOB in marine environments.
- Klíčová slova
- Nitrospina, Nitrospira, cultivation, marine sediment, metagenomics, nitrite oxidation,
- MeSH
- Bacteria klasifikace izolace a purifikace metabolismus MeSH
- dusitany metabolismus MeSH
- geologické sedimenty mikrobiologie MeSH
- metabolické sítě a dráhy MeSH
- mikrobiota * MeSH
- mořská voda mikrobiologie MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Korejská republika MeSH
- Názvy látek
- dusitany MeSH
Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.
- MeSH
- amoniak metabolismus MeSH
- Archaea klasifikace genetika izolace a purifikace metabolismus MeSH
- autotrofní procesy MeSH
- bakterie fixující dusík klasifikace genetika izolace a purifikace metabolismus MeSH
- dusitany metabolismus MeSH
- jezera mikrobiologie MeSH
- koloběh uhlíku * genetika MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- dusitany MeSH
While mechanisms of different carbon dioxide (CO2 ) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.
- MeSH
- Archaea metabolismus MeSH
- chemoautotrofní růst fyziologie MeSH
- Chlorobi genetika metabolismus MeSH
- citrátový cyklus fyziologie MeSH
- Epsilonproteobacteria genetika metabolismus MeSH
- fotosyntéza fyziologie MeSH
- hydroxybutyráty metabolismus MeSH
- jezera chemie mikrobiologie MeSH
- koloběh uhlíku fyziologie MeSH
- kyselina mléčná analogy a deriváty metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- ribulosa-1,5-bisfosfát-karboxylasa genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 4-hydroxybutyric acid MeSH Prohlížeč
- hydracrylic acid MeSH Prohlížeč
- hydroxybutyráty MeSH
- kyselina mléčná MeSH
- oxid uhličitý MeSH
- ribulosa-1,5-bisfosfát-karboxylasa MeSH