Most cited article - PubMed ID 20958813
Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis
Myxidium rhodei Léger, 1905 (Cnidaria: Myxozoa) is a kidney-infecting myxosporean that was originally described from the European bitterling Rhodeus amarus. Subsequently, it has been documented based on spore morphology in more than 40 other cypriniform species, with the roach Rutilus rutilus being the most commonly reported host. This study introduces the first comprehensive data assessment of M. rhodei, conducted through morphological, ecological and molecular methods. The morphological and phylogenetic analyses of SSU rDNA sequences of Myxidium isolates obtained from European bitterling and roach did not support parasite conspecificity from these fish. In fact, the roach-infecting isolates represent three distinct parasite species. The first two, M. rutili n. sp. and M. rutilusi n. sp., are closely related cryptic species clustering with other myxosporeans in the freshwater urinary clade, sharing the same tissue tropism. The third one, M. batuevae n. sp., previously assigned to M. cf. rhodei, clustered in the hepatic biliary clade sister to bitterling-infecting M. rhodei. Our examination of diverse cypriniform fishes, coupled with molecular and morphological analyses, allowed us to untangle the cryptic species nature of M. rhodei and discover the existence of novel species. This underscores the largely undiscovered range of myxozoan diversity and highlights the need to incorporate sequence data in diagnosing novel species.
TITLE: Résoudre le casse-tête de Myxidium rhodei (Myxozoa) : aperçu de sa phylogénie et de sa spécificité d’hôte chez les Cypriniformes. ABSTRACT: Myxidium rhodei Léger, 1905 (Cnidaria : Myxozoa) est un Myxosporea infectant les reins qui a été décrit à l’origine chez la bouvière, Rhodeus amarus. Par la suite, il a été documenté, sur la base de la morphologie des spores, chez plus de 40 autres espèces de cypriniformes, le gardon Rutilus rutilus étant l’hôte le plus fréquemment signalé. Cette étude présente la première évaluation complète des données sur M. rhodei, réalisée par des méthodes morphologiques, écologiques et moléculaires. Les analyse morphologiques et phylogénétiques des séquences d’ADNr SSU des isolats de Myxidium obtenus à partir de bouvières et de gardons européens n’ont pas confirmé la conspécificité du parasite de ces poissons. En fait, les isolats infectant les gardons représentent trois espèces distinctes de parasites. Les deux premières, M. rutili n. sp. et M. rutilusi n. sp., sont des espèces cryptiques étroitement apparentées, regroupées avec d’autres Myxosporea du clade urinaire d’eau douce, partageant le même tropisme tissulaire. La troisième, M. batuevae n. sp., précédemment attribuée à M. cf. rhodei, appartient au clade biliaire hépatique, groupe-frère de M. rhodei infectant la bouvière. Notre examen de divers poissons cypriniformes, couplé à des analyses moléculaires et morphologiques, nous a permis de démêler la nature cryptique des espèces de M. rhodei et de découvrir l’existence de nouvelles espèces. Cela souligne la diversité largement méconnue des Myxozoaires et souligne la nécessité d’incorporer des données de séquence dans le diagnostic de nouvelles espèces.
- Keywords
- Cryptic species, Host specificity, Kidney-infecting Myxidium spp., Myxozoa, PCR screening, Phylogeny,
- MeSH
- Cyprinidae parasitology MeSH
- Phylogeny * MeSH
- Host Specificity * MeSH
- Kidney parasitology MeSH
- Cypriniformes * parasitology MeSH
- Myxozoa * classification genetics isolation & purification MeSH
- Fish Diseases * parasitology MeSH
- Parasitic Diseases, Animal * parasitology MeSH
- DNA, Ribosomal MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. RESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. CONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.
- Keywords
- Cryptic invasions, Freshwater conservation, Game fish stocking, Gene flow, Human-mediated translocation, Phylogeography, Population genetics,
- MeSH
- Bayes Theorem MeSH
- Species Specificity MeSH
- Gene Frequency genetics MeSH
- Genetic Variation MeSH
- Carps genetics MeSH
- Humans MeSH
- Microsatellite Repeats genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondria genetics MeSH
- Genetics, Population MeSH
- Rivers * MeSH
- Fresh Water MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- North Sea MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Generalist parasites have the capacity to infect multiple hosts. The temporal pattern of host specificity by generalist parasites is rarely studied, but is critical to understanding what variables underpin infection and thereby the impact of parasites on host species and the way they impose selection on hosts. Here, the temporal dynamics of infection of four species of freshwater mussel by European bitterling fish (Rhodeus amarus) was investigated over three spawning seasons. Bitterling lay their eggs in the gills of freshwater mussels, which suffer reduced growth, oxygen stress, gill damage and elevated mortality as a result of parasitism. The temporal pattern of infection of mussels by European bitterling in multiple populations was examined. Using a Bernoulli Generalized Additive Mixed Model with Bayesian inference it was demonstrated that one mussel species, Unio pictorum, was exploited over the entire bitterling spawning season. As the season progressed, bitterling showed a preference for other mussel species, which were inferior hosts. Temporal changes in host use reflected elevated density-dependent mortality in preferred hosts that were already infected. Plasticity in host specificity by bitterling conformed with the predictions of the host selection hypothesis. The relationship between bitterling and their host mussels differs qualitatively from that of avian brood parasites.
- Keywords
- Brood parasite, Host–parasite co-evolution, Oviposition, Spawning site, Superparasitism,
- MeSH
- Bayes Theorem MeSH
- Cyprinidae MeSH
- Host Specificity * MeSH
- Host-Parasite Interactions * MeSH
- Parasites MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.
- Keywords
- Anodonta woodiana, alien species, glochidia, host–parasite dynamics, intraspecific variation, symbiosis,
- MeSH
- Anodonta genetics growth & development physiology MeSH
- Cyprinidae parasitology physiology MeSH
- Host-Parasite Interactions MeSH
- Oviposition * MeSH
- Larva genetics growth & development physiology MeSH
- Reproduction MeSH
- Avoidance Learning * MeSH
- Introduced Species * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
The impact of multiple invading species can be magnified owing to mutual facilitation--termed 'invasional meltdown'--but invasive species can also be adversely affected by their interactions with other invaders. Using a unique reciprocal host-parasite relationship between a bitterling fish (Rhodeus amarus) and unionid mussels, we show that an invasive mussel reverses the roles in the relationship. Bitterling lay their eggs into mussel gills, and mussel larvae parasitize fish. Bitterling recently colonized Europe and parasitize all sympatric European mussels, but are unable to use a recently invasive mussel, Anodonta woodiana. The parasitic larvae of A. woodiana successfully develop on R. amarus, whereas larvae of European mussels are rejected by bitterling. This demonstrates that invading species may temporarily benefit from a coevolutionary lag by exploiting evolutionarily naive hosts, but the resulting relaxed selection may facilitate its exploitation by subsequent invading species, leading to unexpected consequences for established interspecific relationships.
- MeSH
- Anodonta growth & development parasitology MeSH
- Biological Evolution MeSH
- Cyprinidae growth & development parasitology MeSH
- Species Specificity MeSH
- Host-Parasite Interactions MeSH
- Oviposition MeSH
- Statistics, Nonparametric MeSH
- Sympatry MeSH
- Genetic Speciation MeSH
- Gills parasitology MeSH
- Introduced Species * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Susceptibility to parasite infection was examined in a field experiment for four populations of 0+ juvenile European bitterling (Rhodeus amarus): one sympatric to local parasite fauna, one allopatric, and two hybrid populations. Significantly higher parasite abundance was recorded in the allopatric bitterling population, suggesting a maladaptation of parasites to their sympatric host. Type of parasite life cycle played an important role in host-parasite interactions. While the abundance of allogenic species between populations was comparable, a significant difference was found in abundance of autogenic parasite species between fish populations, with the allopatric population more infected. These results correspond with a prediction of higher dispersion probability and higher gene flow among geographically distant populations of allogenic species as compared to autogenic species. Increased susceptibility to parasites that do not occur within the natural host's geographical distribution was found in the allopatric host, but only for autogenic species. A difference in infection susceptibility was detected among populations of early-hatched bitterling exposed to infection during a period of high parasite abundance and richness in the environment. Differences in parasite abundance and species diversity among populations diminished, however, with increasing time of exposure. No difference was found within late-hatched populations, probably due to a lower probability of infection in late-hatched cohorts.
- MeSH
- Biodiversity MeSH
- Chimera parasitology MeSH
- Cyprinidae parasitology MeSH
- Host-Parasite Interactions * MeSH
- Disease Susceptibility MeSH
- Fish Diseases parasitology MeSH
- Parasitic Diseases, Animal parasitology MeSH
- Parasites classification isolation & purification pathogenicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH