Most cited article - PubMed ID 21348844
Cytokinin and auxin interactions in plant development: metabolism, signalling, transport and gene expression
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
- Keywords
- cytokinin, de novo organogenesis, plant stem cells, shoot apical meristem, shoot regeneration,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND AND AIMS: The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. METHODS: Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. KEY RESULTS: The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. CONCLUSIONS: Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants.
- Keywords
- Cytokinin, algae, auxin, cyanobacteria, cytokinin 2-methylthioderivatives, cytokinin oxidase/dehydrogenase, indole-3-acetic acid, metabolism, tRNA, trans-zeatin,
- MeSH
- Chlorophyta chemistry metabolism physiology MeSH
- Cytokinins analysis metabolism MeSH
- Phylogeny MeSH
- Spectrometry, Mass, Electrospray Ionization methods MeSH
- Homeostasis physiology MeSH
- Indoleacetic Acids analysis metabolism MeSH
- Plant Growth Regulators analysis metabolism MeSH
- Cyanobacteria chemistry metabolism physiology MeSH
- Streptophyta chemistry metabolism physiology MeSH
- Tandem Mass Spectrometry methods MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytokinins MeSH
- Indoleacetic Acids MeSH
- Plant Growth Regulators MeSH