Nejvíce citovaný článek - PubMed ID 21401307
Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants
The objective of this study was to evaluate and compare titanium surfaces: machined (MA); sintered ceramic-blasted (HAS); sintered ceramic-blasted and acid-etched (HAS DE) and to determine the effects of surface topography, roughness and chemical composition on human osteoblast cell reaction. Titanium surface samples were analyzed with respect to surface chemical composition, topography, and roughness. The effects of material surface characteristics on osteoblasts was examined by analyzing osteoblast morphology, viability and differentiation. Osteoblasts cultured on these materials had attached, spread and proliferated on every sample. The viability of osteoblasts cultured on HAS and HAS DE samples increased more intensively in time comparing to MA sample. The viability of osteoblast cultured on HAS samples increased more intensively in the early phases of culture while for cells cultured on HAS DE the cells viability increased later in time. Alkaline phosphate activity was the highest for the cells cultured on HAS sample and statistically higher than for the MA sample. The least activity occurred on the smooth MA sample along with the rougher HAS DE samples. All the examined samples were found to be biocompatible, as indicated by cell attachment, proliferation, and differentiation. Titanium surfaces modification improved the dynamics of osteoblast viability increase. Osteoblast differentiation was found to be affected by the etching procedure and presence of Ca and P on the surface.
- MeSH
- alkalická fosfatasa metabolismus MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- fosfor farmakologie MeSH
- keramika MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteoblasty fyziologie ultrastruktura MeSH
- osteogeneze účinky léků MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- titan chemie MeSH
- vápník farmakologie MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- fosfor MeSH
- titan MeSH
- vápník MeSH
Thin films of binary C60/Ti composites, with various concentrations of Ti ranging from ~ 25% to ~ 70%, were deposited on microscopic glass coverslips and were tested for their potential use in bone tissue engineering as substrates for the adhesion and growth of bone cells. The novelty of this approach lies in the combination of Ti atoms (i.e., widely used biocompatible material for the construction of stomatological and orthopedic implants) with atoms of fullerene C60, which can act as very efficient radical scavengers. However, fullerenes and their derivatives are able to generate harmful reactive oxygen species and to have cytotoxic effects. In order to stabilize C60 molecules and to prevent their possible cytotoxic effects, deposition in the compact form of Ti/C60 composites (with various Ti concentrations) was chosen. The reactivity of C60/Ti composites may change in time due to the physicochemical changes of molecules in an air atmosphere. In this study, we therefore tested the dependence between the age of C60/Ti films (from one week to one year) and the adhesion, morphology, proliferation, viability, metabolic activity and potential DNA damage to human osteosarcoma cells (lines MG-63 and U-2 OS). After 7 days of cultivation, we did not observe any negative influence of fresh or aged C60/Ti layers on cell behavior, including the DNA damage response. The presence of Ti atoms resulted in improved properties of the C60 layers, which became more suitable for cell cultivation.
- MeSH
- buněčná adheze účinky léků MeSH
- časové faktory MeSH
- fullereny chemie farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- osteoblasty cytologie účinky léků metabolismus MeSH
- poškození DNA MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku antagonisté a inhibitory metabolismus MeSH
- titan chemie farmakologie MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury * MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullerene C60 MeSH Prohlížeč
- fullereny MeSH
- reaktivní formy kyslíku MeSH
- titan MeSH
Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced the fluorescence of VE cadherin, KDR, and vonWillebrand factor. Some of these changes sustained up to 6 h of flow, as confirmed by immunofluorescence. Combined matrices Co/LM and Co/FN seem to be more suitable for EC seeding and retention under flow. Moreover, Co/FN matrix promoted slightly more favorable cellular phenotype than Co/LM under SS of 2-6 h.
- MeSH
- buněčná adheze účinky léků MeSH
- časové faktory MeSH
- endoteliální buňky účinky léků metabolismus MeSH
- extracelulární matrix - proteiny farmakologie MeSH
- fluorescenční protilátková technika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mechanický stres * MeSH
- myši MeSH
- pevnost ve smyku * MeSH
- povrchová plasmonová rezonance MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese účinky léků MeSH
- smáčivost MeSH
- stanovení celkové genové exprese MeSH
- vena saphena cytologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH