Nejvíce citovaný článek - PubMed ID 21491327
Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis. The increasing incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has created a need for new antiTB agents with new chemical scaffolds to combat the disease. Thus, the key question is: how to search for new antiTB and where to look for them? One of the possibilities is to search among natural products (NPs). In order to search for new antiTB drugs, the detailed phytochemical study of the whole Dicranostigma franchetianum plant was performed isolating wide spectrum of isoquinoline alkaloids (IAs). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. Alkaloids were screened against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. avium, M. kansasii, and M. smegmatis). Alkaloids 3 and 5 showed moderate antimycobacterial activity against all tested strains (MICs 15.625-31.25 µg/mL). Furthermore, ten semisynthetic berberine (16a-16k) derivatives were developed and tested for antimycobacterial activity. In general, the derivatization of berberine was connected with a significant increase in antimycobacterial activity against all tested strains (MICs 0.39-7.81 μg/mL). Two derivatives (16e, 16k) were identified as compounds with micromolar MICs against M. tuberculosis H37Ra (MIC 2.96 and 2.78 µM). All compounds were also evaluated for their in vitro hepatotoxicity on a hepatocellular carcinoma cell line (HepG2), exerting lower cytotoxicity profile than their MIC values, thereby potentially reaching an effective concentration without revealing toxic side effects.
- Klíčová slova
- Dicranostigma franchetianum, Papaveraceae, antimycobacterial activity, berberine, cytotoxicity, isoquinoline alkaloids,
- MeSH
- antibakteriální látky farmakologie MeSH
- berberin * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- Papaveraceae * MeSH
- tuberkulóza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- berberin * MeSH
In this study, we report the synthesis, antibacterial and anticancer evaluation of 38 novel phenanthridines that were designed as analogs of the benzo[c]phenanthridine alkaloids. The prepared phenanthridines differ from the benzo[c]phenanthridines in the absence of a benzene A-ring. All novel compounds were prepared from 6-bromo-2-hydroxy-3-methoxybenzaldehyde in several synthetic steps through reduction of Schiff bases and accomplished by radical cyclization. Twelve derivatives showed high antibacterial activity against Bacillussubtilis, Micrococcusluteus and/or Mycobacteriumvaccae at single digit micromolar concentrations. Some compounds also displayed cytotoxicity against the K-562 and MCF-7 cancer cell lines at as low as single digit micromolar concentrations and were more potent than chelerythrine and sanguinarine. The active compounds caused cell-cycle arrest in cancer cells, increased levels of p53 protein and caused apoptosis-specific fragmentation of PARP-1. Biological activity was connected especially with the presence of the N-methyl quaternary nitrogen and 7-benzyloxy substitution (compounds 7i, 7j, 7k, and 7l) of phenanthridine.
- Klíčová slova
- antibacterial activity, antiproliferative, benzo[c]phenanthridines, phenanthridines, radical cyclization,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- fenantridiny chemická syntéza chemie farmakologie MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- techniky syntetické chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- fenantridiny MeSH
- protinádorové látky MeSH