Most cited article - PubMed ID 21523556
Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study
Protonation states of molecules significantly influence the thermodynamics and kinetics of chemical reactions. This is especially important in biochemical processes, where appropriate protonation states of amino acids control the exo/endoergicity of practically all biochemical cycles. This paper is focused on appraisal of the impact of DFT functionals and PCM solvation models on the accuracy of pKa evaluations for all proteinogenic amino acids. Eight functionals (B3LYP, PBE0, revPBE0, M06-2X, M11, M11-L, TPSSh, and ωB97X-D) and four basis sets are considered, together with four kinds of implicit solvation models when additional attention is paid to a cavity construction. An influence of nonelectrostatic contributions and Wertz's corrections on Gibbs free energy is investigated together with accuracy of provided proton solvation energy. The best model is based on the M06-2X/6-311++G**/D-PCM/UAKS computational level. The fitting procedure is utilized to improve the accuracy of the evaluated models. All of these results are also compared with values obtained from the COSMOtherm program and CCSD(T) calculations. Results for cysteine and histidine are discussed individually, as they can be found in different protonation states at neutral pH.
- Publication type
- Journal Article MeSH
The kinetics of the hydration reaction on trans-[Pt(NH3)2(pyrX)Cl]+ (pyr = pyridine) complexes (X = OH-, Cl-, F-, Br-, NO2 -, NH2, SH-, CH3, C≡CH, and DMA) was studied by density functional theory calculations in the gas phase and in water solution described by the implicit polarizable continuum model method. All possible positions ortho, meta, and para of the substituent X in the pyridine ring were considered. The substitution of the pyr ligand by electron-donating X's led to the strengthening of the Pt-N1(pyrX) (Pt-NpyrX) bond and the weakening of the trans Pt-Cl or Pt-Ow bonds. The electron-withdrawing X's have exactly the opposite effect. The strengths of these bonds can be predicted from the basicity of sigma electrons on the NpyrX atom determined on the isolated pyrX ligand. As the pyrX ring was oriented perpendicularly with respect to the plane of the complex, the nature of the X···Cl electrostatic interaction was the decisive factor for the transition-state (TS) stabilization which resulted in the highest selectivity of ortho-substituted systems with respect to the reaction rate. Because of a smaller size of X's, the steric effects influenced less importantly the values of activation Gibbs energies ΔG ⧧ but caused geometry changes such as the elongation of the Pt-NpyrX bonds. Substitution in the meta position led to the highest ΔG ⧧ values for most of the X's. The changes of ΔG ⧧ because of electronic effects were the same in the gas phase and the water solvent. However, as the water solvent dampened electrostatic interactions, 2200 and 150 times differences in the reaction rate were observed between the most and the least reactive mono-substituted complexes in the gas phase and the water solvent, respectively. An additional NO2 substitution of the pyrNO2 ligand further decelerated the rate of the hydration reaction, but on the other hand, the poly-NH2 complexes were no more reactive than the fastest o-NH2 system. In the gas phase, the poly-X complexes showed the additivity of the substituent effects with respect to the Pt-ligand bond strengths and the ligand charges.
- Publication type
- Journal Article MeSH
Interaction of cisplatin in activated diaqua-form with His-Met dipeptide is explored using DFT approach with PCM model. First the conformation space of the dipeptide is explored to find the most stable structure (labeled 0683). Several functionals with double-zeta basis set are used for optimization and obtained order of conformers is confirmed by the CCSD(T) single-point calculations. Supermolecular model is used to determine reaction coordinate for the replacement of aqua ligands consequently by N-site of histidine and S-site of methionine and reversely. Despite the monoadduct of Pt-S(Met) is thermodynamically less stable this reaction passes substantially faster (by several orders of magnitude) than coordination of cisplatin to histidine. The consequent chelate formation occurs relatively fast with energy release up to 12 kcal mol-1.
- Keywords
- Anticancer drug, Computational chemistry, Density functional theory, Heavy metal, Thermodynamics,
- MeSH
- Chelating Agents chemistry MeSH
- Cisplatin chemistry MeSH
- Dipeptides chemistry MeSH
- Histidine chemistry MeSH
- Kinetics MeSH
- Methionine chemistry MeSH
- Antineoplastic Agents chemistry MeSH
- Density Functional Theory * MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chelating Agents MeSH
- Cisplatin MeSH
- Dipeptides MeSH
- Histidine MeSH
- Methionine MeSH
- Antineoplastic Agents MeSH
Based on experimental work, 12 half-sandwich organoruthenium(II) complexes with p-cymene and various substituted β-diketonates (acac) modified by several functional groups were explored. These complexes were optimized at the B3PW91/6-31 + G(d)/PCM/UFF computational level with the Ru atom described by Stuttgart pseudopotentials. The electron density analysis was performed using the B3LYP/ 6-311++G(2df,2pd)/DPCM/scaled-UAKS model. Electrostatic and averaged local ionization potential were explored and extremes on 0.001 e/a.u.3 isodensity surfaces discussed. Natural population analysis partial charges and electron densities in bond critical point of the key Ru(II) coordination bonds were determined. There was a clear correlation between the results obtained and experimentally known anticancer descriptors. Graphical abstract Top Average local ionization potential (ALIP) of half-sandwich organoruthenium(II) β-diketonate complex, bottom IC 50 of b-series for ovarian cancer and Ru-P distances (in Å).
- Keywords
- Anticancer Ru(II) complexes, DFT calculations, Half-sandwich complexes,
- Publication type
- Journal Article MeSH
In the study behavior of molecular electrostatic potential, averaged local ionization energy, and reaction electronic flux along the reaction coordinate of hydration process of three representative Ru(II) and Pt(II) complexes were explored using both post-HF and DFT quantum chemical approximations. Previously determined reaction mechanisms were explored by more detailed insight into changes of electronic properties using ωB97XD functional and MP2 method with 6-311++G(2df,2pd) basis set and CCSD/6-31(+)G(d,p) approach. The dependences of all examined properties on reaction coordinate give more detailed understanding of the hydration process.
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Hydration reactions of two anticancer Pt(IV) complexes JM149 and JM216 (Satraplatin) were studied computationally together with the hydration of the Pt(II) complex JM118, which is a product of the Satraplatin reduction. Thermodynamic and kinetic parameters of the reactions were determined at the B3LYP/6-311++G(2df.2pd)//B3LYP/6-31 + G(d)) level of theory. The water solution was modeled using the COSMO implicit solvation model, with cavities constructed using Klamt's atomic radii. It was found that hydration of the Pt(IV) complexes is an endergonic/endothermic reaction. It follows the (pseudo)associative mechanism is substantially slower (k ≈ 10(-11) s(-1)) than the corresponding reaction of Pt(II) analogues ((k ≈ 10(-5) s(-1)). Such a low value of the reaction constant signifies that the hydration of JM149 and Satraplatin is with high probability a kinetically forbidden reaction. Similarly to JM149 and Satraplatin, the hydration of JM118 is an endothermic/endoergic reaction. On the other hand, the kinetic parameters are similar to those of cisplatin Zimmermann et al. (J Mol Model 17:2385-2393, 2011), allowing the hydration reaction to occur at physiological conditions. These results suggest that in order to become active Satraplatin has to be first reduced to JM118, which may be subsequently hydrated to yield the active species.
- MeSH
- Models, Chemical MeSH
- Kinetics MeSH
- Quantum Theory MeSH
- Ligands MeSH
- Models, Molecular MeSH
- Organoplatinum Compounds chemistry MeSH
- Oxidation-Reduction MeSH
- Antineoplastic Agents chemistry MeSH
- Thermodynamics MeSH
- Water chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- amminedichloro(cyclohexylamine)platinum(II) MeSH Browser
- JM 335 MeSH Browser
- Ligands MeSH
- Organoplatinum Compounds MeSH
- Antineoplastic Agents MeSH
- satraplatin MeSH Browser
- Water MeSH