Most cited article - PubMed ID 22182182
Mycobacterium marinum infections in humans and tracing of its possible environmental sources
Nontuberculous mycobacteria (NTM) represent an important group of environmentally saprophytic and potentially pathogenic bacteria that can cause serious mycobacterioses in humans and animals. The sources of infections often remain undetected except for soil- or water-borne, water-washed, water-based, or water-related infections caused by groups of the Mycobacterium (M.) avium complex; M. fortuitum; and other NTM species, including M. marinum infection, known as fish tank granuloma, and M. ulcerans infection, which is described as a Buruli ulcer. NTM could be considered as water-borne, air-borne, and soil-borne pathogens (sapronoses). A lot of clinically relevant NTM species could be considered due to the enormity of published data on permanent, periodic, transient, and incidental sapronoses. Interest is currently increasing in mycobacterioses diagnosed in humans and husbandry animals (esp. pigs) caused by NTM species present in peat bogs, potting soil, garden peat, bat and bird guano, and other matrices used as garden fertilizers. NTM are present in dust particles and in water aerosols, which represent certain factors during aerogenous infection in immunosuppressed host organisms during hospitalization, speleotherapy, and leisure activities. For this Special Issue, a collection of articles providing a current view of the research on NTM-including the clinical relevance, therapy, prevention of mycobacterioses, epidemiology, and ecology-are addressed.
- Keywords
- aerosolization, biofilm formation, environmental saprophytic mycobacteria, estuarine, geophagia, hydrophobic, natural and human-engineered water systems, potentially pathogenic mycobacteria, saprophytic mycobacteria, saprozoic mycobacteria, surface microlayer,
- Publication type
- Editorial MeSH
Mycobacterium fortuitum group (MFG) members are able to cause clinical mycobacteriosis in fish and other animals including humans. M. alvei, M. arceuilense, M. brisbanense, M. conceptionense, M. fortuitum, M. peregrinum, M. porcinum, M. senegalense, M. septicum, and M. setense were isolated from fish with mycobacteriosis. In other animals only three MFG species have been isolated: M. arceuilense from camels' milk, M. farcinogenes from cutaneous infections often described as "farcy", and M. fortuitum from different domestic and wild mammals' species. Out of 17, only 3 MFG species (M. arceuilense, M. lutetiense and M. montmartrense) have never been reported in humans. A total of eight MFG members (M. alvei, M. brisbanense, M. conceptionense, M. fortuitum subsp. acetamidolyticum, M. houstonense, M. peregrinum, M. porcinum, and M. septicum) have been isolated from both pulmonary and extrathoracic locations. In extrathoracic tissues five MFG species (M. boenickei, M. farcinogenes, M. neworleansense, M. senegalense, and M. setense) have been diagnosed and only one MFG member (M. fortuitum subsp. acetamidolyticum) has been isolated from pulmonary infection.
For epidemiology studies, a decontamination method using a solution containing 4.0% NaOH and 0.5% tetradecyltrimethylammonium bromide (TDAB) represents a relatively simple and universal procedure for processing heavily microbially contaminated matrices together with increase of mycobacteria yield and elimination of gross contamination. A contamination rate only averaging 7.3% (2.4% in Cluster S; 6.9% in Cluster R and 12.6% in Cluster E) was found in 787 examined environmental samples. Mycobacteria were cultured from 28.5% of 274 soil and water sediments samples (Cluster S), 60.2% of 251 samples of raw and processed peat and other horticultural substrates (Cluster R), and 29.4% of 262 faecal samples along with other samples of animal origin (Cluster E). A total of 38 species of slow and rapidly growing mycobacteria were isolated. M. avium ssp. hominissuis, M. fortuitum and M. malmoense were the species most often isolated. The parameters for the quantitative detection of mycobacteria by PCR can be significantly refined by treating the sample suspension before DNA isolation with PMA (propidium monoazide) solution. This effectively eliminates DNA residue from both dead mycobacterial cells and potentially interfering DNA segments present from other microbial flora. In terms of human exposure risk assessment, the potential exposure to live non-tuberculous mycobacteria can be more accurately determined.
Mycobacterium marinum, the cause of chronic systemic infections in fish, occasionally causes granulomatous skin and soft tissue lesions in humans. Cutaneous mycobacterial infection in two patients owing to unusual circumstances is presented in this report. The first patient was infected through improper hygienic behavior, while infection in the second patient was previously misdiagnosed as rheumatoid arthritis and treated with methylprednisolone for a period of three months, which resulted in a rare systemic spread of M. marinum into the bones of the hand, testis, and epididymis. Simultaneously, screening for possible sources of M. marinum infection in patients' aquaria revealed positive fish harboring VNTR profiles identical to those obtained for clinical isolates from patients.
- MeSH
- Mycobacterium Infections, Nontuberculous diagnosis microbiology pathology MeSH
- Skin Diseases, Bacterial diagnosis microbiology pathology MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Minisatellite Repeats genetics MeSH
- Mycobacterium marinum genetics isolation & purification pathogenicity MeSH
- Fishes MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH