Most cited article - PubMed ID 22269223
Default mode network and extrastriate visual resting state network in patients with Parkinson's disease dementia
BACKGROUND: Cognitive impairment in Parkinson's disease (PD) is associated with altered connectivity of the resting state networks (RSNs). Longitudinal studies in well cognitively characterized PD subgroups are missing. OBJECTIVES: To assess changes of the whole-brain connectivity and between-network connectivity (BNC) of large-scale functional networks related to cognition in well characterized PD patients using a longitudinal study design and various analytical methods. METHODS: We explored the whole-brain connectivity and BNC of the frontoparietal control network (FPCN) and the default mode, dorsal attention, and visual networks in PD with normal cognition (PD-NC, n = 17) and mild cognitive impairment (PD-MCI, n = 22) as compared to 51 healthy controls (HC). We applied regions of interest-based, partial least squares, and graph theory based network analyses. The differences among groups were analyzed at baseline and at the one-year follow-up visit (37 HC, 23 PD all). RESULTS: The BNC of the FPCN and other RSNs was reduced, and the whole-brain analysis revealed increased characteristic path length and decreased average node strength, clustering coefficient, and global efficiency in PD-NC compared to HC. Values of all measures in PD-MCI were between that of HC and PD-NC. After one year, the BNC was further increased in the PD-all group; no changes were detected in HC. No cognitive domain z-scores deteriorated in either group. CONCLUSION: As compared to HC, PD-NC patients display a less efficient transfer of information globally and reduced BNC of the visual and frontoparietal control network. The BNC increases with time and MCI status, reflecting compensatory efforts.
- Keywords
- Between-network connectivity, Parkinson’s disease, cognitive resting state brain networks, functional MRI, graph measures, longitudinal, mild cognitive impairment, partial least squares analysis,
- MeSH
- Adult MeSH
- Cognitive Dysfunction etiology pathology psychology MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging MeSH
- Brain diagnostic imaging pathology MeSH
- Nerve Net diagnostic imaging pathology MeSH
- Neuroimaging MeSH
- Parkinson Disease complications pathology psychology MeSH
- Prefrontal Cortex pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Parietal Lobe pathology MeSH
- Mental Status and Dementia Tests MeSH
- Visual Cortex pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.
- Keywords
- Dementia, Posterior cingulate, Precuneus, Psychophysiological interactions, Visual pathways, fMRI,
- MeSH
- Alzheimer Disease complications MeSH
- Cognitive Dysfunction diagnostic imaging etiology pathology MeSH
- Oxygen blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Models, Neurological MeSH
- Brain pathology MeSH
- Neural Pathways diagnostic imaging physiopathology MeSH
- Image Processing, Computer-Assisted MeSH
- Psychophysics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Aging * MeSH
- Photic Stimulation MeSH
- Visual Perception physiology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Oxygen MeSH
The resting brain exhibits continuous intrinsic activity, which is correlated between groups of regions forming resting state networks. Evaluating resting connectivity is a popular approach for studying brain diseases. Several hundred studies are now available that address integrity of resting connectivity in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as preclinical at-risk subjects. Most studies focus on the default mode network, a system of specific brain areas showing strong connected resting activity that attenuates during goal-directed behavior. The extent of intrinsic brain activity tends to be strongly correlated with cognitive processes and is specifically disrupted in AD and MCI patients and at-risk subjects, with changes seeming to evolve during the transition between the disease stages. In this study, we review the current findings in default mode network and other resting state network studies in AD and MCI patients and at-risk subjects as assessed by resting state functional magnetic resonance imaging.
- MeSH
- Alzheimer Disease pathology MeSH
- Cognitive Dysfunction pathology MeSH
- Humans MeSH
- Brain blood supply pathology physiopathology MeSH
- Nerve Net pathology MeSH
- Neural Pathways physiology MeSH
- Neuroimaging MeSH
- Rest physiology MeSH
- Risk Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Cortical changes associated with cognitive decline in Parkinson's disease (PD) are not fully explored and require investigations with established diagnostic classification criteria. OBJECTIVE: We used MRI source-based morphometry to evaluate specific differences in grey matter volume patterns across 4 groups of subjects: healthy controls (HC), PD with normal cognition (PD-NC), PD with mild cognitive impairment (MCI-PD) and PD with dementia (PDD). METHODS: We examined 151 consecutive subjects: 25 HC, 75 PD-NC, 29 MCI-PD, and 22 PDD at an Italian and Czech movement disorder centre. Operational diagnostic criteria were applied to classify MCI-PD and PDD. All structural MRI images were processed together in the Czech centre. The spatial independent component analysis was used to assess group differences of local grey matter volume. RESULTS: We identified two independent patterns of grey matter volume deviations: a) Reductions in the hippocampus and temporal lobes; b) Decreases in fronto-parietal regions and increases in the midbrain/cerebellum. Both patterns differentiated PDD from all other groups and correlated with visuospatial deficits and letter verbal fluency, respectively. Only the second pattern additionally differentiated PD-NC from HC. CONCLUSION: Grey matter changes in PDD involve areas associated with Alzheimer-like pathology while fronto-parietal abnormalities are possibly an early marker of PD cognitive decline. These findings are consistent with a non-linear cognitive progression in PD.
- MeSH
- Dementia complications pathology physiopathology MeSH
- Hippocampus pathology physiopathology MeSH
- Cognitive Dysfunction complications pathology physiopathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Mesencephalon pathology physiopathology MeSH
- Cerebellum pathology physiopathology MeSH
- Neuropsychological Tests MeSH
- Parkinson Disease complications pathology physiopathology MeSH
- Aged MeSH
- Temporal Lobe pathology physiopathology MeSH
- Parietal Lobe pathology physiopathology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH