Most cited article - PubMed ID 22323500
Escherichia coli with extended-spectrum β-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe
Escherichia coli sequence type 131 (ST131) is currently one of the leading causes of multidrug-resistant extraintestinal infections globally. Here, we analyzed the phenotypic and genotypic characteristics of 169 ST131 isolates from various sources (wildlife, wastewater, companion animals, community, and hospitals) to determine whether wildlife and the environment share similar strains with humans, supporting transmission of ST131 between different ecological niches. Susceptibility to 32 antimicrobials was tested by disc diffusion and broth microdilution. Antibiotic resistance genes, integrons, plasmid replicons, 52 virulence genes, and fimH-based subtypes were detected by PCR and DNA sequencing. Genomic relatedness was determined by pulsed-field gel electrophoresis (PFGE). The genetic context and plasmid versus chromosomal location of extended-spectrum beta-lactamase and AmpC beta-lactamase genes was determined by PCR and probe hybridization, respectively. The 169 ST131 study isolates segregated predominantly into blaCTX-M-15H30Rx (60%) and blaCTX-M-27H30R1 (25%) subclones. Within each subclone, isolates from different source groups were categorized into distinct PFGE clusters; genotypic characteristics were fairly well conserved within each major PFGE cluster. Irrespective of source, the blaCTX-M-15H30Rx isolates typically exhibited virotype A (89%), an F2:A1:B- replicon (84%), and a 1.7-kb class 1 integron (92%) and had diverse structures upstream of the blaCTX-M region. In contrast, the blaCTX-M-27H30R1 isolates typically exhibited virotype C (86%), an F1:A2:B20 replicon (76%), and a conserved IS26-ΔISEcp1-blaCTX-M-like structure. Despite considerable overall genetic diversity, our data demonstrate significant commonality between E. coli ST131 isolates from diverse environments, supporting transmission between different sources, including humans, environment, and wildlife.
- Keywords
- ESBL, Escherichia coli ST131, environment, nosocomial and community-acquired infections, virulence, wildlife,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- beta-Lactamases genetics MeSH
- Escherichia coli drug effects genetics MeSH
- Escherichia coli Infections genetics microbiology MeSH
- Community-Acquired Infections genetics microbiology MeSH
- Humans MeSH
- Drug Resistance, Multiple, Bacterial genetics MeSH
- Plasmids genetics MeSH
- Escherichia coli Proteins genetics MeSH
- Electrophoresis, Gel, Pulsed-Field MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- Escherichia coli Proteins MeSH
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6')-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Genes, Bacterial MeSH
- Drug Resistance, Bacterial * MeSH
- Cephalosporins pharmacology MeSH
- Escherichia coli classification drug effects genetics isolation & purification MeSH
- Fluoroquinolones pharmacology MeSH
- Genotype MeSH
- Multilocus Sequence Typing MeSH
- Plasmids MeSH
- Polymerase Chain Reaction MeSH
- Electrophoresis, Gel, Pulsed-Field MeSH
- Crows microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cephalosporins MeSH
- Fluoroquinolones MeSH