Most cited article - PubMed ID 22365879
Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold
This study evaluates the antimycobacterial potential of novel "mutual" bioactive amides, combining pyridine-4-carbohydrazide (isoniazid, INH) with various antimicrobial agents (sulphonamides, 4-aminosalicylic acid, thiosemicarbazide, diphenyl (thio)ethers) via oxocarboxylic acids. The aim was to enhance activity against both drug-susceptible and multidrug-resistant (MDR) Mycobacterium tuberculosis and non-tuberculous strains, while overcoming drug resistance through dual-action mechanisms. Many derivatives exhibited potent antimycobacterial activity, with minimum inhibitory concentrations (MICs) as low as ≤0.25 μM, outperforming INH, especially diphenyl (thio)ethers and biphenyl analogues. Additionally, the compounds were effective against M. kansasii (MICs ≤1 μM) and inhibited MDR strains at higher concentrations (≥8 μM). The cytotoxicity assay indicated a favourable safety profile, with no significant haemolysis at 125 μM, and some compounds were even protective. Selectivity for mycobacteria was confirmed by low inhibition of Gram-positive bacteria and inactivity against Gram-negative bacteria or fungi, highlighting the potential for further development as antimycobacterial agents.
- Publication type
- Journal Article MeSH
4-aminobenzoic acid (PABA), an essential nutrient for many human pathogens, but dispensable for humans, and its derivatives have exhibited various biological activities. In this study, we combined two pharmacophores using a molecular hybridization approach: this vitamin-like molecule and various aromatic aldehydes, including salicylaldehydes and 5-nitrofurfural, via imine bond in one-step reaction. Resulting Schiff bases were screened as potential antimicrobial and cytotoxic agents. The simple chemical modification of non-toxic PABA resulted in constitution of antibacterial activity including inhibition of methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 15.62 µM), moderate antimycobacterial activity (MIC ≥ 62.5 µM) and potent broad-spectrum antifungal properties (MIC of ≥ 7.81 µM). Some of the Schiff bases also exhibited notable cytotoxicity for cancer HepG2 cell line (IC50 ≥ 15.0 µM). Regarding aldehyde used for the derivatization of PABA, it is possible to tune up the particular activities and obtain derivatives with promising bioactivities.
- Keywords
- 4-aminobenzoic acid, Schiff bases, antibacterial activity, antifungal activity, cytotoxicity, synthesis, vitamin,
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Cytotoxins chemistry pharmacology MeSH
- 4-Aminobenzoic Acid chemistry pharmacology MeSH
- Folic Acid chemistry pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects growth & development MeSH
- Microbial Sensitivity Tests MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cytotoxins MeSH
- 4-Aminobenzoic Acid MeSH
- Folic Acid MeSH
The resistance among microbes has brought an urgent need for new drugs. Thus, we synthesized a series of Schiff bases derived from the sulfa drug sulfadiazine and various salicylaldehydes. The resulting 4-[(2-hydroxybenzylidene)amino]-N-(pyrimidin-2-yl)benzene-sulfonamides were characterized and evaluated against Gram-positive and Gram-negative bacteria, yeasts, moulds, Mycobacterium tuberculosis, nontuberculous mycobacteria (M. kansasii, M. avium) and their cytotoxicity was determined. Among bacteria, the genus Staphylococcus, including methicillin-resistant S. aureus, showed the highest susceptibility, with minimum inhibitory concentration values from 7.81 µM. The growth of Candida sp. and Trichophyton interdigitale was inhibited at concentrations starting from 1.95 µM. 4-[(2,5-Dihydroxybenzylidene)amino]-N-(pyrimidin-2-yl)-benzenesulfonamide was identified as the most selective Schiff base for these strains with no apparent cytotoxicity and a selectivity index higher than 16. With respect to M. tuberculosis and M. kansasii that were inhibited within the range of 8 to 250 µM, unsubstituted 4-[(2-hydroxy-benzylidene)amino]-N-(pyrimidin-2-yl)benzenesulfonamide meets the selectivity requirement. In general, dihalogenation of the salicylic moiety improved the antibacterial and antifungal activity but also increased the cytotoxicity, especially with an increasing atomic mass. Some derivatives offer more advantageous properties than the parent sulfadiazine, thus constituting promising hits for further antimicrobial drug development.
- Keywords
- Schiff bases, antibacterial activity, antifungal activity, antimycobacterial activity, cytotoxicity, sulfadiazine, sulfonamides,
- MeSH
- Aldehydes chemical synthesis pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Antifungal Agents chemical synthesis chemistry pharmacology MeSH
- Anti-Infective Agents chemical synthesis pharmacology MeSH
- Hep G2 Cells MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Pyrimidines chemical synthesis pharmacology MeSH
- Schiff Bases chemical synthesis pharmacology MeSH
- Sulfadiazine analogs & derivatives chemical synthesis pharmacology MeSH
- Cell Survival drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aldehydes MeSH
- Anti-Bacterial Agents MeSH
- Antifungal Agents MeSH
- Anti-Infective Agents MeSH
- Pyrimidines MeSH
- salicylaldehyde MeSH Browser
- Schiff Bases MeSH
- Sulfadiazine MeSH
Infections caused by Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM) are considered to be a global health problem; current therapeutic options are limited. Sulfonamides have exhibited a wide range of biological activities including those against mycobacteria. Based on the activity of 4-(3-heptylureido)-N-(5-methylisoxazol-3-yl)benzenesulfonamide against NTM, we designed a series of homologous sulfamethoxazole-based n-alkyl ureas (C₁-C12), as well as several related ureas and an oxalamide. Fifteen ureas and one oxalamide were synthesized by five synthetic procedures and characterized. They were screened for their activity against Mtb. and three NTM strains (M. avium, M. kansasii). All of them share antimycobacterial properties with minimum inhibitory concentration (MIC) values starting from 2 µM. The highest activity showed 4,4'-[carbonylbis(azanediyl)]bis[N-(5-methylisoxazol-3-yl)benzenesulfonamide] with MIC of 2-62.5 µM (i.e., 1.07-33.28 µg/mL). Among n-alkyl ureas, methyl group is optimal for the inhibition of both Mtb. and NTM. Generally, longer alkyls led to increased MIC values, heptyl being an exception for NTM. Some of the novel derivatives are superior to parent sulfamethoxazole. Several urea and oxalamide derivatives are promising antimycobacterial agents with low micromolar MIC values.
- Keywords
- antimycobacterial activity, in vitro activity, oxalamide, sulfamethoxazole, sulfonamides, tuberculosis, ureas,
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Urea chemical synthesis chemistry pharmacology MeSH
- Molecular Structure MeSH
- Mycobacterium drug effects MeSH
- Sulfamethoxazole chemical synthesis chemistry pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Urea MeSH
- Sulfamethoxazole MeSH