Nejvíce citovaný článek - PubMed ID 22520833
Different immune response of pigs to Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis infection
Treatment of complete loss of skin thickness requires expensive cellular materials and limited skin grafts used as temporary coverage. This paper presents an acellular bilayer scaffold modified with polydopamine (PDA), which is designed to mimic a missing dermis and a basement membrane (BM). The alternate dermis is made from freeze-dried collagen and chitosan (Coll/Chit) or collagen and a calcium salt of oxidized cellulose (Coll/CaOC). Alternate BM is made from electrospun gelatin (Gel), polycaprolactone (PCL), and CaOC. Morphological and mechanical analyzes have shown that PDA significantly improved the elasticity and strength of collagen microfibrils, which favorably affected swelling capacity and porosity. PDA significantly supported and maintained metabolic activity, proliferation, and viability of the murine fibroblast cell lines. The in vivo experiment carried out in a domestic Large white pig model resulted in the expression of pro-inflammatory cytokines in the first 1-2 weeks, giving the idea that PDA and/or CaOC trigger the early stages of inflammation. Otherwise, in later stages, PDA caused a reduction in inflammation with the expression of the anti-inflammatory molecule IL10 and the transforming growth factor β (TGFβ1), which could support the formation of fibroblasts. Similarities in treatment with native porcine skin suggested that the bilayer can be used as an implant for full-thickness skin wounds and thus eliminate the use of skin grafts.
- Klíčová slova
- Bilayer, Chitosan, Collagen, Oxidized cellulose, Polydopamine, Wound healing,
- MeSH
- myši MeSH
- nanovlákna * MeSH
- prasata MeSH
- sloučeniny osmia MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chloropentaammineosmium(III) chloride MeSH Prohlížeč
- polydopamine MeSH Prohlížeč
- sloučeniny osmia MeSH
The aim of this study was to establish a cell culture system for the generation of porcine monocyte-derived macrophages (MDMs) under reduced-serum conditions. Cultures based on either the Nu-Serum™ Growth Medium Supplement (NUS) or a conventional fetal bovine serum (FBS) were compared, which included the assessment of FBS from two different providers (FBS1 and FBS2). The data obtained confirmed the significant impact of culture conditions on in vitro-generated MDMs. The MDMs cultured under reduced-serum conditions showed increased levels of IL-1β and CD86 mRNA and a proinflammatory cytokine profile, characterized by the increased mRNA expression of IL-23p19, CXCL10, and CCL5. Phagocytic and respiratory burst activities were not adversely affected. Surprisingly, the difference between the two FBSs was much more pronounced than the effect of the reduced-serum supplement. The FBS1 culture conditions gave rise to macrophages with higher surface levels of CD14, CD16, and CD163, a lower CD80 mRNA expression, and an increased induction of IL-10 gene expression. In contrast, none of these trends were observed in macrophage cultures supplemented with FBS2. Instead, the FBS2 culture showed increased levels of IL-1b and CD86 mRNA. In conclusion, reduced-serum culture is a useful tool for in vitro porcine MDM generation, in line with the current research trend of reducing FBS use in biological research.
- Klíčová slova
- in vitro, monocyte-derived macrophages, pig, porcine, serum reduction,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Lactoferrin (LF) is an 80 kDa glycoprotein which is known for its effects against bacteria, viruses and other pathogens. It also has a high potential in nutrition therapy and welfare of people and a variety of animals, including piglets. The ability to bind lipopolysaccharide (LPS) is one of the described anti-inflammatory mechanisms of LF. Previous studies suggested that cells can be stimulated even by LPS-free LF. Therefore, the aim of our study was to bring additional information about this possibility. Porcine monocyte derived macrophages (MDMF) and human embryonic kidney (HEK) cells were stimulated with unpurified LF in complex with LPS and with purified LF without bound LPS. RESULTS: Both cell types were stimulated with unpurified as well as purified LF. On the other hand, neither HEK0 cells not expressing any TLR nor HEK4a cells transfected with TLR4 produced any pro-inflammatory cytokine transcripts after stimulation with purified LF. This suggests that purified LF without LPS stimulates cells via another receptor than TLR4. An alternative, TLR4-independent, pathway was further confirmed by analyses of the NF-kappa-B-inducing kinase (NIK) activation. Western blot analyses showed NIK which activates different NFκB subunits compared to LF-LPS signaling via TLR4. Though, this confirmed an alternative pathway which is used by the purified LF free of LPS. This stimulation of MDMF led to low, but significant amounts of pro-inflammatory cytokines, which can be considered as a positive stimulation of the immune system. CONCLUSION: Our results suggest that LF's ability is not only to bind LPS, but LF itself may be a stimulant of pro-inflammatory pathways.
- Klíčová slova
- Inflammatory cytokines, LPS, NFκB, NIK, TLR4,
- MeSH
- cytokiny genetika metabolismus MeSH
- HEK293 buňky MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- laktoferrin izolace a purifikace farmakologie MeSH
- lidé MeSH
- lipopolysacharidy farmakologie MeSH
- makrofágy účinky léků MeSH
- prasata MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- toll-like receptor 4 genetika metabolismus MeSH
- vazba proteinů MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- intracelulární signální peptidy a proteiny MeSH
- laktoferrin MeSH
- lipopolysacharidy MeSH
- Nik related kinase MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- toll-like receptor 4 MeSH
BACKGROUND: Following infection and initial multiplication in the gut lumen, Salmonella Typhimurium crosses the intestinal epithelial barrier and comes into contact with cells of the host immune system. Mononuclear phagocytes which comprise macrophages and dendritic cells (DC) are of key importance for the outcome of Salmonella infection. Although macrophages and DC may differentiate from a common precursor, their capacities to process and present antigen differ significantly. In this study, we therefore compared the response of porcine macrophages and DC differentiated from peripheral blood monocytes to S. Typhimurium and one of the most potent bacterial pathogen associated molecular patterns, bacterial lipopolysaccharide. To avoid any bias, the expression was determined by protein LC-MS/MS and verified at the level of transcription by quantitative RT-PCR. RESULTS: Within 4 days of culture, peripheral blood monocytes differentiated into two populations with distinct morphology and expression of MHC II. Mass spectrometry identified 446 proteins in macrophages and 672 in DC. Out of these, 433 proteins were inducible in macrophages either after infection with S. Typhimurium or LPS exposure and 144 proteins were inducible in DC. The expression of the 46 most inducible proteins was verified at the level of transcription and the differential expression was confirmed in 22 of them. Out of these, 16 genes were induced in both cell types, 3 genes (VCAM1, HMOX1 and Serglycin) were significantly induced in macrophages only and OLDLR1 and CDC42 were induced exclusively in DC. Thirteen out of 22 up-regulated genes contained the NF-kappaB binding site in their promoters and could be considered as either part of the NF-kappaB feedback loop (IkappaBalpha and ISG15) or as NF-kappaB targets (IL1beta, IL1alpha, AMCF2, IL8, SOD2, CD14, CD48, OPN, OLDLR1, HMOX1 and VCAM1). CONCLUSIONS: The difference in the response of monocyte derived macrophages and DC was quantitative rather than qualitative. Despite the similarity of the responses, compared to DC, the macrophages responded in a more pro-inflammatory fashion.
- MeSH
- buněčná diferenciace MeSH
- dendritické buňky účinky léků imunologie mikrobiologie MeSH
- kultivované buňky MeSH
- lipopolysacharidy farmakologie MeSH
- makrofágy cytologie účinky léků imunologie mikrobiologie MeSH
- prasata * MeSH
- regulace genové exprese účinky léků imunologie MeSH
- Salmonella typhimurium fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipopolysacharidy MeSH
BACKGROUND: This study aims to investigate the anti-inflammatory effect of biologically active phospholipids (BAP) used in preparations for clinical practice in humans. Until date, except anti-neoplastic ability, little is known about anti-inflammatory property of the phospholipids. METHODS: While the course of bacterially induced acute pneumonia and markers of inflammation were studied in in vivo system in pigs orally supplemented with BAP, the pro- and anti-inflammatory response of lipopolysaccharide-stimulated porcine monocyte-derived macrophages to 24 h- and 48 h-treatment by BAP was investigated in in vitro system. In vivo, the animal health status was monitored and pro-inflammatory IL-1β and IL-8 in sera were detected by ELISA during the experiment, while bronchoalveolar lavage fluids (BALF) and the lungs were examined post-mortem. Total and differential counts of white blood cell (WBC) were determined in blood and BALF. In vitro, mRNA expression of pro-inflammatory (TNF-α, IL-1β, CXCL10) and anti-inflammatory (IL-10 and Arg1) cytokines, and level of activated caspase 1 and phosphorylated protein kinase C epsilon (pPKCϵ), were studied using qRT-PCR and Western blot, respectively. For the purposes of both systems, 6 animals were used in each of the BAP-supplemented and the control groups. RESULTS: In vivo, BAP had a positive influence on the course of the disease. The immunomodulatory effects of BAP were confirmed by lower levels of IL-1β, IL-8, and a lower WBC count in the supplemented group in comparison with the control group. A lower percentage of lung parenchyma was affected in the supplemented group comparing to the control group (on average, 4% and 34% of tissue, respectively). In vitro, BAP suppressed mRNA expression of mRNA for IL-10 and all pro-inflammatory cytokines tested. This down-regulation was dose- and time-dependent. Arg1 mRNA expression remained unaffected. Further dose- and time-dependent suppression of the activated caspase 1 and pPKCϵ was detected in macrophages when treated with BAP. CONCLUSIONS: Our results demonstrate that BAP has anti-inflammatory and immunomodulatory properties, thus emphasizing the potential of this compound as a natural healing agent.
- MeSH
- antiflogistika farmakologie MeSH
- bakteriální pneumonie metabolismus patologie MeSH
- bronchoalveolární lavážní tekutina cytologie MeSH
- cytokiny krev MeSH
- fosfolipidethery farmakologie MeSH
- kultivované buňky MeSH
- leukocyty MeSH
- lipopolysacharidy MeSH
- makrofágy účinky léků MeSH
- plíce účinky léků patologie MeSH
- prasata MeSH
- zánět farmakoterapie metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika MeSH
- cytokiny MeSH
- fosfolipidethery MeSH
- lipopolysacharidy MeSH