Most cited article - PubMed ID 22677920
Corpus callosum atrophy--a simple predictor of multiple sclerosis progression: a longitudinal 9-year study
BACKGROUND AND PURPOSE: Potential differences between primary progressive and relapsing remitting multiple sclerosis are the subject of ongoing controversial discussions. The aim of this work was to determine whether and how primary-progressive and relapsing-remitting multiple sclerosis subtypes differ regarding conventional MR imaging parameters, cerebral iron deposits, and their association with clinical status. MATERIALS AND METHODS: We analyzed 24 patients with primary-progressive MS, 80 with relapsing-remitting MS, and 20 healthy controls with 1.5T MR imaging for assessment of the conventional quantitative parameters: T2 lesion load, T1 lesion load, brain parenchymal fraction, and corpus callosum volume. Quantitative susceptibility mapping was performed to estimate iron concentration in the deep gray matter. RESULTS: Decreased susceptibility within the thalamus in relapsing-remitting MS compared with primary-progressive MS was the only significant MR imaging difference between these MS subtypes. In the relapsing-remitting MS subgroup, the Expanded Disability Status Scale score was positively associated with conventional parameters reflecting white matter lesions and brain atrophy and with iron in the putamen and caudate nucleus. A positive association with putaminal iron and the Expanded Disability Status Scale score was found in primary-progressive MS. CONCLUSIONS: Susceptibility in the thalamus might provide additional support for the differentiation between primary-progressive and relapsing-remitting MS. That the Expanded Disability Status Scale score was associated with conventional MR imaging parameters and iron concentrations in several deep gray matter regions in relapsing-remitting MS, while only a weak association with putaminal iron was observed in primary-progressive MS suggests different driving forces of disability in these MS subtypes.
- MeSH
- Multiple Sclerosis, Chronic Progressive diagnostic imaging MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Multiple Sclerosis, Relapsing-Remitting diagnostic imaging MeSH
- Thalamus chemistry pathology MeSH
- Iron analysis MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Iron MeSH
Patients with clinically isolated syndrome (CIS), unlike those with multiple sclerosis (MS), have a selective cognitive impairment which is not consistently related to structural brain changes. Our objective was to characterize a profile of cognitive impairment and its association with structural brain changes in patients with CIS who are at high risk of developing MS. Patients with CIS at high risk for MS on interferon-beta (n = 51) and age-, gender-, and education-matched controls (n = 44) underwent comprehensive neuropsychological testing and MRI brain scan with voxel-based morphometry. The CIS group had lower cognitive performance in verbal and nonverbal memory, information processing speed/attention/working memory, and executive and visuo-spatial functions compared to controls (p ≤ 0.040). Lower cognitive performance was present in 18-37 and 14-26% of patients with CIS at high risk for MS depending on the criteria used. Brain volume was reduced predominantly in fronto-temporal regions and the thalamus in the CIS group (p ≤ 0.019). Cognitive performance was not associated with structural brain changes except for the association between worse visuo-spatial performance and lower white matter volume in the CIS group (β = 0.29; p = 0.042). Our results indicated that patients with CIS at high risk for MS may have a pattern of lower cognitive performance and regional brain atrophy similar to that found in patients with MS. Lower cognitive performance may be present in up to one-third of patients with CIS at high risk for MS, but, unlike patients with MS, variability in their cognitive performance may lead to a lack of consistent associations with structural brain changes.
- Keywords
- Clinically isolated syndrome, Cognition, MRI, Multiple sclerosis, Neuropsychology, Voxel-based morphometry,
- MeSH
- Atrophy MeSH
- Demyelinating Diseases complications diagnostic imaging psychology MeSH
- Adult MeSH
- Cognitive Dysfunction diagnostic imaging etiology MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain diagnostic imaging MeSH
- Neuropsychological Tests MeSH
- Image Processing, Computer-Assisted MeSH
- Disability Evaluation MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Risk Factors MeSH
- Organ Size MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: To compare clinical and MRI parameters between patients with clinically isolated syndrome and those converting to clinically definite multiple sclerosis within 2 years, to identify volumetric MRI predictors of this conversion and to assess effect of early relapses. METHODS: The SET study comprised 220 patients with clinically isolated syndrome treated with interferon beta (mean age, 29 years; Expanded Disability Status Scale, 1.5). Three patients with missing data were excluded from the analysis. Physical disability, time to clinically definite multiple sclerosis and volumetric MRI data were recorded for 2 years. RESULTS: Patients reaching clinically definite multiple sclerosis showed impaired recovery of neurological function, faster decrease in corpus callosum cross-sectional area, higher T2 lesion volume and more contrast-enhancing lesions. Six-month decrease in corpus callosum cross-sectional area (≥ 1%) and baseline T2 lesion volume (≥ 5 cm(3)) predicted clinically definite multiple sclerosis within 2 years (hazard ratios 2.5 and 1.8, respectively). Of 22 patients fulfilling both predictive criteria, 83% reached clinically definite multiple sclerosis (hazard ratio 6.5). More relapses were associated with poorer recovery of neurological function and accelerated brain atrophy. CONCLUSIONS: Neurological impairment is more permanent, brain atrophy is accelerated and focal inflammatory activity is greater in patients converting to clinically definite multiple sclerosis. Six-month corpus callosum atrophy and baseline T2 lesion volume jointly help predict individual risk of clinically definite multiple sclerosis. Early relapses contribute to permanent damage of the central nervous system.
- MeSH
- Corpus Callosum pathology MeSH
- Demyelinating Diseases diagnosis drug therapy MeSH
- Adult MeSH
- Interferon-beta therapeutic use MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Magnetic Resonance Imaging methods MeSH
- Predictive Value of Tests MeSH
- Disease Progression MeSH
- Proportional Hazards Models MeSH
- Recurrence MeSH
- Multiple Sclerosis diagnosis pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Interferon-beta MeSH