Nejvíce citovaný článek - PubMed ID 23150991
Mechanistic study of 17α-ethinylestradiol biodegradation by Pleurotus ostreatus: tracking of extracelullar and intracelullar degradation mechanisms
Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms-white-rot fungi Irpex lacteus and Pleurotus ostreatus-were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography-mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.
- Klíčová slova
- chlorhexidine, dental hygiene, laccase, ligninolytic fungi, manganese-dependent peroxidase, octenidine, personal care products, quaternary ammonium compounds, recalcitrant pollutant,
- MeSH
- antiinfekční látky lokální metabolismus MeSH
- biodegradace * MeSH
- chlorhexidin chemie metabolismus MeSH
- houby metabolismus MeSH
- iminy MeSH
- lidé MeSH
- metabolomika metody MeSH
- pyridiny chemie metabolismus MeSH
- stomatologická péče MeSH
- transformace genetická MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiinfekční látky lokální MeSH
- chlorhexidin MeSH
- iminy MeSH
- octenidine MeSH Prohlížeč
- pyridiny MeSH
Recent studies documented that several processes in filamentous fungi are connected with microsomal enzyme activities. In this work, microsomal subproteomes of Pleurotus ostreatus were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. To assess proteome dynamics, microsomal proteins were isolated from fungal cultures after 7 and 12 days of cultivation. Additionally, 10 mg/L of 17α-ethinylestradiol (EE2) was treated with the cultures during 2 days. Despite the EE2 degradation by the fungus reached 97 and 76.3 % in 7- and 12-day-old cultures, respectively, only a minor effect on the composition of microsomal proteins was observed. The changes in protein maps related to ageing prevailed over those induced by EE2. Epoxide hydrolase, known to metabolize EE2, was detected in 12-day-old cultures only which suggests differences in EE2 degradation pathways utilized by fungal cultures of different age. The majority (32 %) of identified microsomal proteins were parts of mitochondrial energy metabolism.
- MeSH
- 2D gelová elektroforéza MeSH
- fungální proteiny analýza MeSH
- mikrozomy chemie MeSH
- Pleurotus chemie MeSH
- proteom analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- proteom MeSH