Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder for which current treatments provide only symptomatic relief, primarily through cholinesterase (ChE) inhibition and N-methyl-d-aspartate receptor (NMDAR) antagonism. To improve therapeutic efficacy and safety, we designed and synthesized 16 novel tacrine derivatives modified at position 7 with various (hetero)aryl groups or deuterium substitution. Initially, in silico screening predicted favorable CNS permeability and oral bioavailability. Subsequent in vitro evaluations demonstrated significant inhibitory potency against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with derivatives 5i and 5m displaying particularly promising profiles. Metabolic stability assessed using human liver microsomes revealed enhanced stability for compound 5e, whereas 5i and 5m underwent rapid metabolism. Notably, compound 7 showed improved metabolic stability attributed to deuterium incorporation. The newly synthesized compounds were further tested for antagonistic activity on the GluN1/GluN2B subtype of NMDAR, with compound 5m exhibiting the most potent and voltage-independent inhibition. The ability of these compounds to permeate the blood-brain barrier (BBB) was confirmed through in vitro PAMPA assays. In preliminary hepatotoxicity screening (HepG2 cells), most derivatives exhibited higher cytotoxicity than tacrine, emphasizing the ongoing challenge in hepatotoxicity management. Based on its overall favorable profile, compound 5m advanced to in vivo pharmacokinetic studies in mice, demonstrating efficient CNS penetration, with brain concentrations exceeding plasma levels (brain-to-plasma ratio 2.36), indicating active transport across the BBB. These findings highlight compound 5m as a promising tacrine-based multi-target-directed ligand, supporting further preclinical development as a potential therapeutic candidate for AD.
- Keywords
- Acetylcholinesterase, Alzheimer's disease, Butyrylcholinesterase, Multi-target directed ligands, N-methyl-d-aspartate receptor, Tacrine,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Alzheimer Disease * drug therapy metabolism MeSH
- Biological Availability MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors * pharmacology chemistry chemical synthesis MeSH
- Blood-Brain Barrier metabolism MeSH
- Microsomes, Liver metabolism MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Structure MeSH
- Mice MeSH
- Receptors, N-Methyl-D-Aspartate * antagonists & inhibitors metabolism MeSH
- Tacrine * pharmacology chemistry chemical synthesis MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors * MeSH
- Ligands MeSH
- Receptors, N-Methyl-D-Aspartate * MeSH
- Tacrine * MeSH
Animal liver microsomes are a rich source of carboxylesterases with potential for biocatalytic applications. However, their instability and difficulty in reuse limit their practical application. This study investigates the immobilization of animal liver microsomes from four species Mus musculus (house mouse), Sus scrofa (wild boar), Dama dama (fallow deer), and Capreolus capreolus (roe deer) on Perloza MG microparticles for enhanced stability and reusability. Immobilization significantly improved the stability and pH tolerance of the microsomes, particularly those from D. dama, maintaining esterase activity across a broad pH range (5-9) and enabling the reusability over ten consecutive cycles. The immobilized D. dama microsomes were successfully employed in a preparative-scale chemo-enzymatic synthesis of a cyclophilin D inhibitor, achieving a total reaction yield of 68% with 98% final product purity, demonstrating their potential for sustainable organic synthesis.
- Keywords
- Biocatalysis, Carboxylesterases, Chemo-enzymatic synthesis, Immobilization, Magnetic microparticles,
- MeSH
- Enzymes, Immobilized * chemistry metabolism MeSH
- Esters * chemistry metabolism MeSH
- Hydrolysis MeSH
- Microsomes, Liver * enzymology chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Mice MeSH
- Sus scrofa MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Enzymes, Immobilized * MeSH
- Esters * MeSH
The potential as a cancer therapeutic target of the recently reported hotspot binding region close to Lys508 of the β-catenin armadillo repeat domain was not exhaustively explored. In order to get more insight, we synthesized novel N-(heterocyclylphenyl)benzenesulfonamides 6-28. The new compounds significantly inhibited Wnt-dependent transcription as well as SW480 and HCT116 cancer cell proliferation. Compound 25 showed binding mode consistent with this hotspot binding region. Compound 25 inhibited the growth of SW480 and HCT116 cancer cells with IC50's of 2 and 0.12 μM, respectively, and was superior to the reference compounds 5 and 5-FU. 25 inhibited the growth of HCT-116 xenografted in BALB/Cnu/nu mice, reduced the expression of the proliferation marker Ki67, and significantly affected the expression of cancer-related genes. After incubation with human and mouse liver microsomes, 25 showed a higher metabolic stability than 5. Compound 25 aims to be a promising lead for the development of colorectal cancer anticancer therapies.
- MeSH
- beta Catenin * metabolism antagonists & inhibitors MeSH
- HCT116 Cells MeSH
- Microsomes, Liver metabolism MeSH
- Humans MeSH
- Mice, Inbred BALB C * MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation * drug effects MeSH
- Antineoplastic Agents * pharmacology chemical synthesis chemistry MeSH
- Sulfonamides * pharmacology chemistry chemical synthesis MeSH
- Structure-Activity Relationship MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- beta Catenin * MeSH
- Antineoplastic Agents * MeSH
- Sulfonamides * MeSH
Abuse of the highly toxic compound fentanyl and its analogues is increasing, raising serious public health concerns due to their potency and availability. Therefore, there is a need for decontamination methodologies to safely remove fentanyl to avoid harmful exposure. In this study, the efficacy of commercial and in-house synthesized decontamination agents (Dahlgren Decon, RSDL (Reactive Skin Decontamination Lotion), FAST-ACT (First applied sorbent treatment against chemical threats), GDS2000, alldecont MED, bleach, Domestos Spray Bleach, Effekt Klor, MgO, TiO2-nanodiamond, and CeO2) were evaluated for the degradation of fentanyl and carfentanil under controlled laboratory conditions and on wooden floor surfaces. Liquid chromatography/mass spectrometry analysis showed that oxidative decontamination agents were the most effective, with N-oxides identified as major degradation products. The physiological effects of these N-oxides were also investigated regarding their ability to activate the µ-opioid receptor and their metabolism in human liver microsomes. The results provide empirical evidence that complements prior research findings on the degradation of fentanyl and carfentanil using a variety of decontamination agents.
- MeSH
- Decontamination * methods MeSH
- Fentanyl * analogs & derivatives pharmacology MeSH
- Microsomes, Liver metabolism MeSH
- Humans MeSH
- Analgesics, Opioid pharmacology MeSH
- Receptors, Opioid, mu metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- carfentanil MeSH Browser
- Fentanyl * MeSH
- Analgesics, Opioid MeSH
- Receptors, Opioid, mu MeSH
Lenvatinib is an orally effective tyrosine kinase inhibitor used to treat several types of tumors, including progressive, radioiodine-refractory differentiated thyroid cancer and advanced renal cell carcinoma. Although this drug is increasingly used in therapy, its metabolism and effects on the organism are still not described in detail. Using the rat as an experimental animal model, this study aimed to investigate the metabolism of lenvatinib by rat microsomal enzymes and cytochrome P450 (CYPs) enzymes recombinantly expressed in SupersomesTM in vitro and to assess the effect of lenvatinib on rat CYP expression in vivo. Two metabolites, O-desmethyl lenvatinib, and lenvatinib N-oxide, were produced by rat CYPs in vitro. CYP2A1 and 2C12 were found to be the most effective in forming O-desmethyl lenvatinib, while CYP3A2 was found to primarily form lenvatinib N-oxide. The administration of lenvatinib to rats caused changes in the expression of mRNA and protein, as well as the activity of various CYPs, particularly in an increase in CYP1A1. Thus, the administration of lenvatinib to rats has an impact on the level of CYPs.
- Keywords
- cytochrome P450, lenvatinib, protein expression, tyrosine kinase inhibitor,
- MeSH
- Quinolines * pharmacology MeSH
- Phenylurea Compounds * pharmacology MeSH
- Protein Kinase Inhibitors * pharmacology MeSH
- Tyrosine Kinase Inhibitors MeSH
- Microsomes, Liver drug effects MeSH
- Liver * drug effects metabolism MeSH
- Rats MeSH
- RNA, Messenger metabolism genetics MeSH
- Oxidation-Reduction * drug effects MeSH
- Rats, Sprague-Dawley MeSH
- Cytochrome P-450 Enzyme System * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Quinolines * MeSH
- Phenylurea Compounds * MeSH
- Protein Kinase Inhibitors * MeSH
- Tyrosine Kinase Inhibitors MeSH
- lenvatinib MeSH Browser
- RNA, Messenger MeSH
- Cytochrome P-450 Enzyme System * MeSH
Gyrophoric acid (GA), a lichen secondary metabolite, has attracted more attention during the last years because of its potential biological effects. Until now, its effect in vivo has not yet been demonstrated. The aim of our study was to evaluate the basic physicochemical and pharmacokinetic properties of GA, which are directly associated with its biological activities. The stability of the GA in various pH was assessed by conducting repeated UV-VIS spectral measurements. Microsomal stability in rat liver microsomes was performed using Ultra-Performance LC/MS. Binding to human serum albumin (HSA) was assessed using synchronous fluorescence spectra, and molecular docking analysis was used to reveal the binding site of GA to HSA. In the in vivo experiment, 24 Sprague-Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided as follows. The first group (n = 6) included healthy males as control intact rats (♂INT), and the second group (n = 6) included healthy females as controls (♀INT). Groups three and four (♂GA/n = 6 and ♀GA/n = 6) consisted of animals with daily administered GA (10 mg/kg body weight) in an ethanol-water solution per os for a one-month period. We found that GA remained stable under various pH and temperature conditions. It bonded to human serum albumin with the binding constant 1.788 × 106 dm3mol-1 to reach the target tissue via this mechanism. In vivo, GA did not influence body mass gain, food, or fluid intake during the experiment. No liver toxicity was observed. However, GA increased the rearing frequency in behavioral tests (p < 0.01) and center crossings in the elevated plus-maze (p < 0.01 and p < 0.001, respectively). In addition, the time spent in the open arm was prolonged (p < 0.01 and p < 0.001, respectively). Notably, GA was able to pass through the blood-brain barrier, indicating its ability to permeate into the brain and to stimulate neurogenesis in the hilus and subgranular zone of the hippocampus. These observations highlight the potential role of GA in influencing brain function and neurogenesis.
- Keywords
- behavior, gyrophoric acid, hippocampus, human serum albumin, in vivo, rats,
- MeSH
- Microsomes, Liver metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Rats MeSH
- Humans MeSH
- Serum Albumin, Human metabolism chemistry MeSH
- Rats, Sprague-Dawley * MeSH
- Molecular Docking Simulation * MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Serum Albumin, Human MeSH
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.
- Keywords
- Inflammation, Kinase inhibitor, NOD, Quinazoline derivatives, RIPK2, RIPK3,
- MeSH
- Quinazolines * pharmacology MeSH
- Humans MeSH
- Microsomes * MeSH
- Mice MeSH
- Receptor-Interacting Protein Serine-Threonine Kinase 2 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Quinazolines * MeSH
- Receptor-Interacting Protein Serine-Threonine Kinase 2 MeSH
- RIPK2 protein, human MeSH Browser
This study examined the biotransformation of phytocannabinoids in human hepatocytes. The susceptibility of the tested compounds to transformations in hepatocytes exhibited the following hierarchy: cannabinol (CBN) > cannabigerol (CBG) > cannabichromene (CBC) > cannabidiol (CBD). Biotransformation included hydroxylation, oxidation to a carboxylic acid, dehydrogenation, hydrogenation, dehydration, loss/shortening of alkyl, glucuronidation and sulfation. CBN was primarily metabolized by oxidation of a methyl to a carboxylic acid group, while CBD, CBG and CBC were preferentially metabolized by direct glucuronidation. The study also screened for the activity of recombinant human cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs), which could catalyze the hydroxylation and glucuronidation of the tested compounds, respectively. We found that CBD was hydroxylated mainly by CYPs 2C8, 2C19, 2D6; CBN by 1A2, 2C9, 2C19 and 2D6; and CBG by 2B6, 2C9, 2C19 and 2D6. CBC exhibited higher susceptibility to CYP-mediated transformation than the other tested compounds, mainly with CYPs 1A2, 2B6, 2C8, 2C19, 2D6 and 3A4 being involved. Further, CBD was primarily glucuronidated by UGTs 1A3, 1A7, 1A8, 1A9 and 2B7; CBN by 1A7, 1A8, 1A9 and 2B7; CBG by 1A3, 1A7, 1A8, 1A9, 2B4, 2B7 and 2B17; and the glucuronidation of CBC was catalyzed by UGTs 1A1, 1A8, 1A9 and 2B7.
- Keywords
- CYP, Cannabinoid, Human hepatocyte, MS fragmentation, Mass spectrometry, UGT,
- MeSH
- Biotransformation MeSH
- Glucuronosyltransferase metabolism MeSH
- Microsomes, Liver * metabolism MeSH
- Carboxylic Acids MeSH
- Humans MeSH
- Cytochrome P-450 Enzyme System * metabolism MeSH
- Uridine Diphosphate metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- cannabichromene MeSH Browser
- Glucuronosyltransferase MeSH
- Carboxylic Acids MeSH
- Cytochrome P-450 Enzyme System * MeSH
- Uridine Diphosphate MeSH
Tacrine was the first drug used in the therapy of Alzheimer's disease (AD) and is one of the leading structures frequently pursued in the drug discovery of novel candidates for tackling AD. However, because tacrine has been withdrawn from the market due to its hepatotoxicity, ascribed to specific metabolites, concerns are high about the toxicity profile of newly developed compounds related to tacrine. From the point of view of drug safety, the formation of metabolites must be uncovered and analyzed. Bearing in mind that the main culprit of tacrine hepatotoxicity is its biotransformation to hydroxylated metabolites, human liver microsomes were used as a biotransformation model. Our study aims to clarify phase I metabolites of three potentially non-toxic tacrine derivatives (7-methoxytacrine, 6-chlorotacrine, 7-phenoxytacrine) and to semi-quantitatively determine the relative amount of individual metabolites as potential culprits of tacrine-based hepatotoxicity. For this purpose, a new selective UHPLC-Orbitrap method has been developed. Applying UHPLC-Orbitrap method, two as yet unpublished tacrine and 7-methoxytacrine monohydroxylated metabolites have been found and completely characterized, and the separation of ten dihydroxylated tacrine and 7-methoxytacrine metabolites was achieved for the first time. Moreover, the structures of several new metabolites of 7-phenoxytacrine and 6-chlorotacrine have been identified. In addition, the relative amount of these newly observed metabolites was determined. Based on the results and known facts about the toxicity of tacrine metabolites published so far, it appears that 7-phenoxytacrine and 6-chlorotacrine could be substantially less hepatotoxic compared to tacrine, and could potentially pave the way for metabolically safe molecules applicable in AD therapy.
- Keywords
- 6-chlorotacrine, 7-methoxytacrine, 7-phenoxytacrine, Human liver microsomes biotransformation, Tacrine, Ultra-High-Performance-Liquid-Chromatography-Mass-Spectrometry (UHPLC-MS/MS),
- MeSH
- Alzheimer Disease * drug therapy metabolism MeSH
- Cholinesterase Inhibitors chemistry MeSH
- Microsomes, Liver metabolism MeSH
- Chemical and Drug Induced Liver Injury * metabolism MeSH
- Humans MeSH
- Tacrine MeSH
- Chromatography, High Pressure Liquid MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Tacrine MeSH
In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.
- Keywords
- antidepressants, anxiolytics, cytochrome P450, drug metabolism, psychological stress,
- MeSH
- Antidepressive Agents metabolism MeSH
- Anti-Anxiety Agents * metabolism MeSH
- Biotransformation MeSH
- Microsomes, Liver metabolism MeSH
- Humans MeSH
- Stress, Psychological MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antidepressive Agents MeSH
- Anti-Anxiety Agents * MeSH
- Cytochrome P-450 Enzyme System MeSH