Nejvíce citovaný článek - PubMed ID 25911668
Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene
The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.
- Klíčová slova
- DNA-adducts, Sudan I, benzo[a]pyrene, cytochromes P450 1A1 and 1A2 and 1B1, genotoxicity, microsomal epoxide hydrolase,
- MeSH
- adukty DNA toxicita MeSH
- barvicí látky toxicita MeSH
- benzopyren toxicita MeSH
- cytochrom P-450 CYP1A1 metabolismus MeSH
- jaterní mikrozomy účinky léků MeSH
- játra účinky léků MeSH
- karcinogeny životního prostředí toxicita MeSH
- krysa rodu Rattus MeSH
- naftoly toxicita MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-phenylazo-2-naphthol MeSH Prohlížeč
- adukty DNA MeSH
- barvicí látky MeSH
- benzo(a)pyrene-DNA adduct MeSH Prohlížeč
- benzopyren MeSH
- cytochrom P-450 CYP1A1 MeSH
- karcinogeny životního prostředí MeSH
- naftoly MeSH
Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
- MeSH
- bronchy účinky léků metabolismus ultrastruktura MeSH
- buněčné kultury MeSH
- epitelo-mezenchymální tranzice účinky léků genetika MeSH
- epitelové buňky účinky léků metabolismus ultrastruktura MeSH
- interleukin-1beta genetika MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- pevné částice toxicita MeSH
- poškození DNA MeSH
- stanovení celkové genové exprese MeSH
- transformované buněčné linie MeSH
- transkriptom účinky léků MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-1beta MeSH
- látky znečišťující vzduch MeSH
- pevné částice MeSH
- výfukové emise vozidel MeSH
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
- Klíčová slova
- 17alpha-ethinylestradiol, Benzo[a]pyrene, Cytochrome P450, DNA-adducts, Endocrine disruptors, Estradiol,
- MeSH
- benzopyren toxicita MeSH
- cytochrom P-450 CYP1A1 biosyntéza genetika MeSH
- endokrinní disruptory toxicita MeSH
- estradiol toxicita MeSH
- ethinylestradiol toxicita MeSH
- jaterní mikrozomy účinky léků enzymologie MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- regulace genové exprese enzymů * účinky léků MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzopyren MeSH
- cytochrom P-450 CYP1A1 MeSH
- endokrinní disruptory MeSH
- estradiol MeSH
- ethinylestradiol MeSH
Polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) can induce cytochrome P450 1A1 (CYP1A1) via a p53-dependent mechanism. The effect of different p53-activating chemotherapeutic drugs on CYP1A1 expression, and the resultant effect on BaP metabolism, was investigated in a panel of isogenic human colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-) or TP53(-/-) were treated for up to 48 h with 60 μM cisplatin, 50 μM etoposide or 5 μM ellipticine, each of which caused high p53 induction at moderate cytotoxicity (60-80% cell viability). We found that etoposide and ellipticine induced CYP1A1 in TP53(+/+) cells but not in TP53(-/-) cells, demonstrating that the mechanism of CYP1A1 induction is p53-dependent; cisplatin had no such effect. Co-incubation experiments with the drugs and 2.5 μM BaP showed that: (i) etoposide increased CYP1A1 expression in TP53(+/+) cells, and to a lesser extent in TP53(-/-) cells, compared to cells treated with BaP alone; (ii) ellipticine decreased CYP1A1 expression in TP53(+/+) cells in BaP co-incubations; and (iii) cisplatin did not affect BaP-mediated CYP1A1 expression. Further, whereas cisplatin and etoposide had virtually no influence on CYP1A1-catalysed BaP metabolism, ellipticine treatment strongly inhibited BaP bioactivation. Our results indicate that the underlying mechanisms whereby etoposide and ellipticine regulate CYP1A1 expression must be different and may not be linked to p53 activation alone. These results could be relevant for smokers, who are exposed to increased levels of BaP, when prescribing chemotherapeutic drugs. Beside gene-environment interactions, more considerations should be given to potential drug-environment interactions during chemotherapy.
- Klíčová slova
- Benzo[a]pyrene, Cisplatin, Cytochrome P450, Ellipticine, Etoposide, Tumour suppressor p53,
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren farmakokinetika farmakologie MeSH
- cisplatina farmakologie MeSH
- cytochrom P-450 CYP1A1 biosyntéza metabolismus MeSH
- cytochrom P-450 CYP3A biosyntéza metabolismus MeSH
- elipticiny farmakokinetika farmakologie MeSH
- enzymová indukce účinky léků MeSH
- etoposid farmakologie MeSH
- geny p53 MeSH
- HCT116 buňky MeSH
- karcinogeny farmakokinetika farmakologie MeSH
- kolorektální nádory farmakoterapie genetika metabolismus patologie MeSH
- lidé MeSH
- metabolická aktivace MeSH
- nádorový supresorový protein p53 nedostatek genetika metabolismus MeSH
- poškození DNA MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- benzopyren MeSH
- cisplatina MeSH
- CYP1A1 protein, human MeSH Prohlížeč
- CYP3A4 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP1A1 MeSH
- cytochrom P-450 CYP3A MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- etoposid MeSH
- karcinogeny MeSH
- nádorový supresorový protein p53 MeSH
- TP53 protein, human MeSH Prohlížeč
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus MeSH
- cytochrom-B(5)-reduktasa metabolismus MeSH
- hepatocyty enzymologie MeSH
- jaterní mikrozomy enzymologie MeSH
- myši knockoutované MeSH
- myši MeSH
- NADPH-cytochrom c-reduktasa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adukty DNA MeSH
- benzo(a)pyrene-DNA adduct MeSH Prohlížeč
- benzopyren MeSH
- cytochrom-B(5)-reduktasa MeSH
- NADPH-cytochrom c-reduktasa MeSH
Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.
- Klíčová slova
- 3-Nitrobenzanthrone, Aristolochic acid nephropathy, Balkan endemic nephropathy, Carcinogen metabolism, DNA adducts, Sulfotransferase 1A1,
- MeSH
- adukty DNA účinky léků genetika MeSH
- arylsulfotransferasa genetika MeSH
- benz(a)anthraceny toxicita MeSH
- cytosol účinky léků metabolismus MeSH
- játra účinky léků metabolismus MeSH
- karcinogeny toxicita MeSH
- kyseliny aristolochové toxicita MeSH
- ledviny účinky léků metabolismus MeSH
- lidé MeSH
- multigenová rodina MeSH
- myši knockoutované MeSH
- myši transgenní MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3-nitrobenzanthrone MeSH Prohlížeč
- adukty DNA MeSH
- arylsulfotransferasa MeSH
- benz(a)anthraceny MeSH
- karcinogeny MeSH
- kyseliny aristolochové MeSH
- SULT1A1 protein, human MeSH Prohlížeč
- SULT1A2 protein, human MeSH Prohlížeč
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren toxicita MeSH
- cytochrom-B(5)-reduktasa metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- benzopyren MeSH
- cytochrom-B(5)-reduktasa MeSH
Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP-7,8-dihydrodiol and BaP-9-ol, which are intermediates in BaP-derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP-3-ol, a metabolite that is a 'detoxified' product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP-7,8-dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP-9-ol. BaP-3-ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active.
- Klíčová slova
- benzo[a]pyrene, cytochrome P450, human liver, metabolism,
- MeSH
- adukty DNA metabolismus MeSH
- benzopyren metabolismus farmakokinetika MeSH
- jaterní mikrozomy metabolismus MeSH
- játra enzymologie metabolismus MeSH
- králíci MeSH
- lidé MeSH
- metabolická inaktivace MeSH
- oxidace-redukce MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- benzo(a)pyrene-DNA adduct MeSH Prohlížeč
- benzopyren MeSH
- systém (enzymů) cytochromů P-450 MeSH