Nejvíce citovaný článek - PubMed ID 23488175
Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.
- Klíčová slova
- Equisetum arvense, Leucanthemum vulgare, Alluvial sediment, Phytoextraction, Phytoremediation, Shoot accumulation,
- MeSH
- biodegradace MeSH
- hornictví MeSH
- kadmium metabolismus MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo metabolismus MeSH
- půda chemie MeSH
- rostliny * metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- zinek MeSH
The effect of coating the seed of clover crops by water absorbing seed process (WASP) technology pelletization on its germination capacity was studied in conditions of diverse drought intensities simulated by different concentrations of polyethylenglycol (PEG) 8000 solution. Drought resistance was monitored in the seed of five fodder clover species: Anthyllis vulneraria L., Medicago lupulina L., Trifolium repens L., Melilotus albus Medik. and Onobrychis viciifolia Scop. In the seed of given plant species, germination capacity was determined along with the share of dead and hard seeds. Although the coating significantly (p < 0.05) affected the drought resistance of seeds, the germination capacity increased only in conditions of milder drought (simulation with PEG: 0.1-0.3 mol). With the increasing intensity of drought induced by higher PEG concentrations (0.4-0.7 mol) the number of germinable seeds demonstrably decreased and the number of dead seeds increased in the coated seed as compared with the uncoated seed. The coated seed can be appropriate for use in M. lupulina, M. albus and T. repens, while the uncoated seed can be used in A. vulneraria and O. viciifolia.
- Klíčová slova
- dead seeds, drought tolerance, hardseededness, legumes, polyethylenglycol, seeds improvement,
- Publikační typ
- časopisecké články MeSH