Nejvíce citovaný článek - PubMed ID 23999537
ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase
Prostate cancer is one of the most prominent cancers diagnosed in males. Contrasting with other cancer types, glucose utilization is not increased in prostate carcinoma cells as they employ different metabolic adaptations involving mitochondria as a source of energy and intermediates required for rapid cell growth. In this regard, prostate cancer cells were associated with higher activity of mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key rate limiting component of the glycerophosphate shuttle, which connects mitochondrial and cytosolic processes and plays significant role in cellular bioenergetics. Our research focused on the role of mGPDH biogenesis and regulation in prostate cancer compared to healthy cells. We show that the 42 amino acid presequence is cleaved from N-terminus during mGPDH biogenesis. Only the processed form is part of the mGPDH dimer that is the prominent functional enzyme entity. We demonstrate that mGPDH overexpression enhances the wound healing ability in prostate cancer cells. As mGPDH is at the crossroad of glycolysis, lipogenesis and oxidative metabolism, regulation of its activity by intramitochondrial processing might represent rapid means of cellular metabolic adaptations.
- Klíčová slova
- GPD2 gene, metabolic adaptation, mitochondrial glycerol-3-phosphate dehydrogenase (EC:1.1.5.3), prostate cancer,
- MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mitochondrie genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory prostaty genetika metabolismus MeSH
- transfekce MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycerolfosfátdehydrogenasa MeSH
Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10-2-10-1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.
- MeSH
- biguanidy farmakologie MeSH
- fenformin farmakologie MeSH
- glycerolfosfátdehydrogenasa metabolismus MeSH
- hnědá tuková tkáň cytologie MeSH
- hypoglykemika farmakologie MeSH
- krysa rodu Rattus MeSH
- kyselina jantarová metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metformin farmakologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- peroxid vodíku farmakologie MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biguanidy MeSH
- fenformin MeSH
- glycerolfosfátdehydrogenasa MeSH
- hypoglykemika MeSH
- kyselina jantarová MeSH
- metformin MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH