Most cited article - PubMed ID 24107733
Ca2+ sensitization and Ca2+ entry in the control of blood pressure and adrenergic vasoconstriction in conscious Wistar-Kyoto and spontaneously hypertensive rats
Sympathetic hyperactivity and relative NO deficiency are characteristic alterations in both genetic and salt hypertension. The contribution of these abnormalities to blood pressure (BP) maintenance can be determined in conscious rats using a consecutive blockade of particular vasoactive systems. Thus, the contribution of pressor effects of angiotensin II to the maintenance of high BP is usually small, but the role of renin-angiotensin system in the development of hypertension mediated by central and peripheral effects of angiotensin II on sympathetic activity is highly important. This is even true in angiotensin-dependent hypertension of heterozygous Ren-2 transgenic rats in which sympathetic hyperactivity is increasing with age. Central sympathoexcitation in this hypertensive model can be inhibited by lower losartan doses than peripheral angiotensin II-dependent vasoconstriction. This experimental model also yielded important knowledge on nephroprotective effects of new therapeutic drugs - endothelin receptor type A blockers. A considerable part of sympathetic vasoconstriction is dependent on the interaction of Ca2+ sensitization (RhoA/Rho kinase pathway) and Ca2+ influx (through L-VDCC). The blockade of these pathways prevents a major part of sympathetic vasoconstriction. Ca2+ sensitization seems to be attenuated in genetic hypertension in order to compensate increased Ca2+ influx. In contrast, enhanced Ca2+ sensitization is a hallmark of salt sensitivity in Dahl rats in which salt hypertension is dependent on increased Ca2+ influx. The attention should also be paid to the impairment of arterial baroreflex sensitivity which permits enhanced BP responses to pressor or depressor stimuli. Some abnormalities can be studied in blood vessels isolated from hypertensive rats but neither conduit arteries nor mesenteric resistance arteries represent the vascular beds decisive for the increased peripheral resistance and high BP. Keywords: Sympathetic vasoconstriction, NO-dependent vasodilatation, Calcium sensitization, Calcium influx, Arterial baroreflex, Spontaneously hypertensive rats, Salt hypertensive Dahl rats, Ren-2 transgenic rats, RAS blockade, SNS blockade, NOS inhibition, Endothelin, Vascular contraction and relaxation, Isolated conduit and resistance arteries, EDCF, PGI2, BKCa channels.
- MeSH
- Hypertension * physiopathology metabolism MeSH
- Blood Pressure physiology MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Renin-Angiotensin System physiology MeSH
- Sympathetic Nervous System * physiopathology metabolism MeSH
- Vasodilation * physiology drug effects MeSH
- Vasoconstriction * physiology drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Salt hypertensive Dahl rats are characterized by sympathoexcitation and relative NO deficiency. We tested the hypothesis that the increased blood pressure (BP) response to fasudil in salt hypertensive Dahl rats is due to augmented calcium sensitization in the salt-sensitive strain and/or due to their decreased baroreflex efficiency. BP reduction after acute administration of nifedipine (an L-type voltage-dependent calcium channel blocker) or fasudil (a Rho kinase inhibitor) was studied in conscious intact rats and in rats subjected to acute NO synthase inhibition or combined blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium), and NO synthase (L-NAME). Intact salt-sensitive (SS) Dahl rats fed a low-salt diet had greater BP responses to nifedipine (-31 ± 6 mmHg) or fasudil (-34 ± 7 mmHg) than salt-resistant (SR) Dahl rats (-16 ± 4 and -17 ± 2 mmHg, respectively), and a high-salt intake augmented the BP response only in SS rats. These BP responses were doubled after acute NO synthase inhibition, indicating that endogenous NO attenuates both calcium entry and calcium sensitization. Additional pentolinium administration, which minimized sympathetic compensation for the drug-induced BP reduction, magnified the BP responses to nifedipine or fasudil in all groups except for salt hypertensive SS rats due to their lower baroreflex efficiency. The BP response to the calcium channel blocker nifedipine can distinguish SS and SR rats even after calcium sensitization inhibition by fasudil, which was not seen when fasudil was administered to nifedipine-pretreated rats. Thus, enhanced calcium entry (potentiated by sympathoexcitation) in salt hypertensive Dahl rats is the abnormality that is essential for their BP increase, which was further augmented by increased calcium sensitization in salt-sensitive Dahl rats.
- Keywords
- Baroreflex efficiency, Fasudil, Nifedipine, Nitric oxide, Rho kinase, Sympathetic tone, Voltage-dependent calcium channels,
- MeSH
- Hypertension * drug therapy MeSH
- Blood Pressure MeSH
- Rats MeSH
- Sodium Chloride, Dietary * MeSH
- Rats, Inbred Dahl MeSH
- Calcium MeSH
- Vasoconstriction MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sodium Chloride, Dietary * MeSH
- Calcium MeSH
We investigated whether polyethylene glycol-coated Fe3O4 nanoparticles (IONs), acute stress and their combination modifies vascular functions, nitric oxide synthase (NOS) activity, mean arterial pressure (MAP) as well as hepcidin and ferritin H gene expressions in Wistar-Kyoto rats. Rats were divided into control, ION-treated rats (1 mg Fe/kg i.v.), repeated acute air-jet stress-exposed rats and IONs-and-stress co-exposed rats. Maximal acetylcholine (ACh)-induced and sodium nitroprusside (SNP)-induced relaxations in the femoral arteries did not differ among the groups. IONs alone significantly elevated the N?-nitro-L-arginine methyl ester (L-NAME)-sensitive component of ACh-induced relaxation and reduced the sensitivity of vascular smooth muscle cells to SNP. IONs alone also elevated NOS activity in the brainstem and hypothalamus, reduced NOS activity in the kidneys and had no effect in the liver. Acute stress alone failed to affect vascular function and NOS activities in all the tissues investigated but it elevated ferritin H expression in the liver. In the ION-and-stress group, NOS activity was elevated in the kidneys and liver, but reduced in the brainstem and hypothalamus vs. IONs alone. IONs also accentuated air-jet stress-induced MAP responses vs. stress alone. Interestingly, stress reduced ION-originated iron content in blood and liver while it was elevated in the kidneys. In conclusion, the results showed that 1) acute administration of IONs altered vascular function, increased L-NAME-sensitive component of ACh-induced relaxation and had tissue-dependent effects on NOS activity, 2) ION effects were considerably reduced by co-exposure to repeated acute stress, likely related to decrease of ION-originated iron in blood due to elevated decomposition and/or excretion.
- MeSH
- Endothelium, Vascular drug effects metabolism MeSH
- Stress, Physiological drug effects MeSH
- Rats MeSH
- Magnetic Iron Oxide Nanoparticles administration & dosage chemistry MeSH
- Nitric Oxide biosynthesis metabolism MeSH
- Rats, Inbred WKY MeSH
- Nitric Oxide Synthase metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitric Oxide MeSH
- Nitric Oxide Synthase MeSH
Glucocorticoids (GCS) are known to modulate cardiovascular response during stress conditions. The present study was aimed to test the hypothesis that permissive and/or stimulating effect of GCs is essential for the maintenance of peripheral vascular resistance and for the adequate response of cardiovascular system to stressor exposure. The effects of acute pharmacological adrenalectomy (PhADX) on humoral and cardiovascular parameters were studied in adult Wistar rats under the basal conditions and during the acute restraint stress. Acute PhADX was performed by the administration of metyrapone and aminoglutethimide (100 mg/kg s.c. of each drug) resulting in a suppression of endogenous glucocorticoid synthesis. Blood pressure (BP), heart rate (HR) and core body temperature were measured using radiotelemetry. BP responses to administration of vasoactive agents were determined in pentobarbital-anesthetized animals. PhADX considerably attenuated stress-induced increase of BP, HR and core body temperature. PhADX did not abolish BP and HR lowering effects of ganglionic blocker pentolinium indicating preserved sympathetic function in PhADX rats. BP response to exogenous norepinephrine administration was attenuated in PhADX rats, suggesting reduced sensitivity of cardiovascular system. Suppression of corticosterone synthesis by PhADX increased basal plasma levels of ACTH, aldosterone and plasma renin activity in unstressed animals but there was no further increase of these hormones following stressor exposure. In conclusion, PhADX attenuated stress-induced rise of blood pressure, heart rate and core body temperature indicating an important permissive and/or stimulating role of glucocorticoids in the maintenance of the adequate response of cardiovascular system and thermoregulation to several stimuli including acute exposure to stressor.
- MeSH
- Adrenalectomy MeSH
- Aminoglutethimide pharmacology MeSH
- Antimetabolites pharmacology MeSH
- Vascular Resistance drug effects MeSH
- Restraint, Physical physiology MeSH
- Glucocorticoids antagonists & inhibitors biosynthesis MeSH
- Aromatase Inhibitors pharmacology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Metyrapone pharmacology MeSH
- Disease Models, Animal MeSH
- Rats, Wistar MeSH
- Heart Rate drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aminoglutethimide MeSH
- Antimetabolites MeSH
- Glucocorticoids MeSH
- Aromatase Inhibitors MeSH
- Metyrapone MeSH
Calcium sensitization mediated by RhoA/Rho kinase pathway can be evaluated either in the absence (basal calcium sensitization) or in the presence of endogenous vasoconstrictor systems (activated calcium sensitization). Our aim was to compare basal and activated calcium sensitization in three forms of experimental hypertension with increased sympathetic tone and enhanced calcium entry-spontaneously hypertensive rats (SHR), heterozygous Ren-2 transgenic rats (TGR), and salt hypertensive Dahl rats. Activated calcium sensitization was determined as blood pressure reduction induced by acute administration of Rho kinase inhibitor fasudil in conscious rats with intact sympathetic nervous system (SNS) and renin-angiotensin system (RAS). Basal calcium sensitization was studied as fasudil-dependent difference in blood pressure response to calcium channel opener BAY K8644 in rats subjected to RAS and SNS blockade. Calcium sensitization was also estimated from reduced development of isolated artery contraction by Rho kinase inhibitor Y-27632. Activated calcium sensitization was enhanced in all three hypertensive models (due to the hyperactivity of vasoconstrictor systems). In contrast, basal calcium sensitization was reduced in SHR and TGR relative to their controls, whereas it was augmented in salt-sensitive Dahl rats relative to their salt-resistant controls. Similar differences in calcium sensitization were seen in femoral arteries of SHR and Dahl rats.
- MeSH
- Animals, Genetically Modified MeSH
- Hypertension etiology genetics metabolism pathology MeSH
- rho-Associated Kinases antagonists & inhibitors genetics MeSH
- Rats MeSH
- Humans MeSH
- Rats, Inbred Dahl MeSH
- Rats, Inbred SHR MeSH
- Signal Transduction drug effects MeSH
- Sympathetic Nervous System metabolism pathology MeSH
- Calcium administration & dosage metabolism MeSH
- Vasoconstriction genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- rho-Associated Kinases MeSH
- Calcium MeSH