Nejvíce citovaný článek - PubMed ID 24133266
Amplified cold transduction in native nociceptors by M-channel inhibition
Teeth are composed of many tissues, covered by an inflexible and obdurate enamel. Unlike most other tissues, teeth become extremely cold sensitive when inflamed. The mechanisms of this cold sensation are not understood. Here, we clarify the molecular and cellular components of the dental cold sensing system and show that sensory transduction of cold stimuli in teeth requires odontoblasts. TRPC5 is a cold sensor in healthy teeth and, with TRPA1, is sufficient for cold sensing. The odontoblast appears as the direct site of TRPC5 cold transduction and provides a mechanism for prolonged cold sensing via TRPC5's relative sensitivity to intracellular calcium and lack of desensitization. Our data provide concrete functional evidence that equipping odontoblasts with the cold-sensor TRPC5 expands traditional odontoblast functions and renders it a previously unknown integral cellular component of the dental cold sensing system.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Damage-sensing nociceptors in the skin provide an indispensable protective function thanks to their specialized ability to detect and transmit hot temperatures that would block or inflict irreversible damage in other mammalian neurons. Here we show that the exceptional capacity of skin C-fiber nociceptors to encode noxiously hot temperatures depends on two tetrodotoxin (TTX)-resistant sodium channel α-subunits: NaV1.8 and NaV1.9. We demonstrate that NaV1.9, which is commonly considered an amplifier of subthreshold depolarizations at 20°C, undergoes a large gain of function when temperatures rise to the pain threshold. We also show that this gain of function renders NaV1.9 capable of generating action potentials with a clear inflection point and positive overshoot. In the skin, heat-resistant nociceptors appear as two distinct types with unique and possibly specialized features: one is blocked by TTX and relies on NaV1.9, and the second type is insensitive to TTX and composed of both NaV1.8 and NaV1.9. Independent of rapidly gated TTX-sensitive NaV channels that form the action potential at pain threshold, NaV1.8 is required in all heat-resistant nociceptors to encode temperatures higher than ∼46°C, whereas NaV1.9 is crucial for shaping the action potential upstroke and keeping the NaV1.8 voltage threshold within reach.
- MeSH
- akční potenciály MeSH
- buněčné linie MeSH
- kůže MeSH
- metoda terčíkového zámku MeSH
- molekulární evoluce MeSH
- myši inbrední C57BL MeSH
- napětově řízený sodíkový kanál typ 10 metabolismus MeSH
- napětově řízený sodíkový kanál typ 11 metabolismus MeSH
- nociceptory metabolismus MeSH
- práh bolesti MeSH
- techniky in vitro MeSH
- vysoká teplota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- napětově řízený sodíkový kanál typ 10 MeSH
- napětově řízený sodíkový kanál typ 11 MeSH
- Scn10a protein, mouse MeSH Prohlížeč
- Scn11a protein, mouse MeSH Prohlížeč
Currently available behavioral assays to quantify normal cold sensitivity, cold hypersensitivity and cold hyperalgesia in mice have betimes created conflicting results in the literature. Some only capture a limited spectrum of thermal experiences, others are prone to experimenter bias or are not sensitive enough to detect the contribution of ion channels to cold sensing because in mice smaller alterations in cold nociception do not manifest as frank behavioral changes. To overcome current limitations we have designed a novel device that is automated, provides a high degree of freedom, i.e. thermal choice, and eliminates experimenter bias. The device represents a thermal gradient assay designed as a circular running track. It allows discerning exploratory behavior from thermal selection behavior and provides increased accuracy by providing measured values in duplicate and by removing edge artifacts. Our custom-designed automated offline analysis by a blob detection algorithm is devoid of movement artifacts, removes light reflection artifacts and provides an internal quality control parameter which we validated. The assay delivers discrete information on a large range of parameters extracted from the occupancy of thermally defined zones such as preference temperature and skew of the distribution. We demonstrate that the assay allows increasingly accurate phenotyping of thermal sensitivity in transgenic mice by disclosing yet unrecognized details on the phenotypes of TRPM8-, TRPA1- and TRPM8/A1-deficient mice.
- Klíčová slova
- TRPA1, TRPM8, nociception, skew, thermal selection, thermosensation,
- Publikační typ
- časopisecké články MeSH