Most cited article - PubMed ID 24265829
The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland
BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.
- Keywords
- Bromus erectus, Inula salicina, Janzen–Connell hypothesis, Plant–soil (below-ground) interactions, coexistence, germination, moisture treatment, population dynamics, population growth rate, target–neighbour design,
- MeSH
- Soil * MeSH
- Soil Microbiology MeSH
- Plants * MeSH
- Seedlings MeSH
- Plant Development MeSH
- Feedback MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Soil * MeSH
After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.
- Keywords
- Fungal structures, Mycorrhizal response, Native AMF, Soil biota, Soil legacy,
- MeSH
- Fungi MeSH
- Plant Roots MeSH
- Microbiota * MeSH
- Mycorrhizae * MeSH
- Grassland MeSH
- Soil MeSH
- Soil Microbiology MeSH
- Plant Development MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Soil MeSH
Plant-soil feedback (PSF) is a fundamental mechanism explaining plant community composition. Two-phase experiments, i.e., conditioning and feedback, represent a common methodology to study PSF. The duration of the conditioning phase varies among studies and the PSF observed is often explained by its biotic component. Little is known about the temporal variation of PSF and its abiotic component. As early life stages are crucial for plant establishment, we grew Rorippa austriaca in soil conditioned over 2, 4, 6 or 8 weeks by a conspecific or a co-occurring species, Agrostis capillaris. For each conditioning duration, we analysed the soil chemical properties and the direction and intensity of intra- or inter-specific feedbacks. With increasing duration, the negative intra- and inter-specific feedbacks became stronger and weaker, respectively. The inter-specific feedback was more negative than the intra-specific feedback at 2 weeks and this reversed thereafter. The Mg content decreased with conditioning duration whatever the conditioning species was. With increasing duration, conditioning by R. austriaca strongly decreased pH, while A. capillaris did not affect pH. The K and P contents were not affected by the conditioning duration and were higher in R. austriaca soil than in A. capillaris soil. Our results suggest that not only conditioning species but also duration of conditioning phase may affect the magnitude of PSF. The changes in soil chemical properties linked to the conditioning species or the conditioning phase duration may drive the feedbacks by affecting plant growth directly or via the interacting microbial communities.
- Keywords
- Brassicaceae, Conditioning, Native species, Negative feedback, Plant-soil feedback indices,
- MeSH
- Soil * MeSH
- Soil Microbiology MeSH
- Plants * MeSH
- Plant Development MeSH
- Feedback MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Soil * MeSH
BACKGROUND: The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood. AIMS AND METHODS: The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field) with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities. KEY RESULTS: The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes in the AMF communities are the most likely drivers of the observed changes. The effects of other soil biota, however, cannot be fully excluded. CONCLUSIONS: These results suggest that the availability of soil fungi may not be the most important limiting factor for the establishment of grassland species in abandoned fields if we manage to reduce the intensity of competition at these sites e.g., by mowing or grazing.
- MeSH
- Microbial Consortia physiology MeSH
- Mycorrhizae physiology MeSH
- Grassland * MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH