Most cited article - PubMed ID 24364436
Occurrence of microsporidia as emerging pathogens in Slovak Roma children and their impact on public health
Microsporidia are pathogenic organism related to fungi. They cause infections in a wide variety of mammals as well as in avian, amphibian, and reptilian hosts. Many microsporidia species play an important role in the development of serious diseases that have significant implications in human and veterinary medicine. While microsporidia were originally considered to be opportunistic pathogens in humans, it is now understood that infections also occur in immune competent humans. Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Enterocytozoon bieneusi are primarily mammalian pathogens. However, many other species of microsporidia that have some other primary host that is not a mammal have been reported to cause sporadic mammalian infections. Experimental models and observations in natural infections have demonstrated that microsporidia can cause a latent infection in mammalian hosts. This chapter reviews the published studies on mammalian microsporidiosis and the data on chronic infections due to these enigmatic pathogens.
- Keywords
- Epidemiology, Infection, Latency, Mammals, Microsporidia, Recurrent infection, Transmission,
- MeSH
- Enterocytozoon * MeSH
- Feces microbiology MeSH
- Humans MeSH
- Microsporidia * genetics MeSH
- Persistent Infection MeSH
- Mammals MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Microsporidia of the genus Encephalitozoon are usually associated with severe infections in immunodeficient hosts while, in immunocompetent ones, microsporidiosis produces minimal clinically apparent disease. Despite their microscopic size, microsporidia are capable of causing systemic infection within a few days. However, the mechanisms by which microsporidia reach target tissues during acute infection remain unclear. Out of four genotypes of Encephalitozoon cuniculi, only three are available for experimental studies, with E. cuniculi genotype II being the best characterized. METHODS: In the present study, we tested the association between inflammation induction in immunocompetent and immunodeficient mice and the presence of spores of E. cuniculi genotypes I and III in selected organs using molecular methods and compared the results with previously published data on E. cuniculi genotype II. RESULTS: We reported the positive connection between inflammation induction and the significant increase of E. cuniculi genotypes I and III occurrence in inflammatory foci in both immunocompetent BALB/c and immunodeficient severe combined immunodeficient (SCID) mice in the acute phase of infection. The induction of inflammation resulted in increased concentration of E. cuniculi of both genotypes in the site of inflammation, as previously reported for E. cuniculi genotype II. Moreover, our study extended the spectrum of differences among E. cuniculi genotypes by the variations in dispersal rate within host bodies after experimentally induced inflammation. CONCLUSION: The results imply possible involvement of immune cells serving as vehicles transporting E. cuniculi towards inflammation foci. The elucidation of possible connection with pro-inflammatory immune responses represents an important challenge with implications for human health and the development of therapeutic strategies.
- Keywords
- Encephalitozoon cuniculi genotype I, Encephalitozoon cuniculi genotype III, inflammation, targeted migration,
- Publication type
- Journal Article MeSH
The Roma are Europe's largest minority. They are also one of its most disadvantaged, with low levels of education and health and high levels of poverty. Research on Roma health often reveals higher burdens of disease in the communities studied. This paper aims to review the literature on communicable diseases among Roma across Eastern and Central Europe. A PubMed search was carried out for communicable diseases among Roma in these parts of Europe, specifically in Romania, Bulgaria, Hungary, Serbia, Slovakia, the Czech Republic and North Macedonia. The papers were then screened for relevance and utility. Nineteen papers were selected for review; most of them from Slovakia. Roma continue to have a higher prevalence of communicable diseases and are at higher risk of infection than the majority populations of the countries they live in. Roma children in particular have a particularly high prevalence of parasitic disease. However, these differences in disease prevalence are not present across all diseases and all populations. For example, when Roma are compared to non-Roma living in close proximity to them, these differences are often no longer significant.
- Keywords
- Central and Eastern Europe, Roma, communicable diseases, review,
- MeSH
- Cryptosporidium * MeSH
- Child MeSH
- Communicable Diseases * epidemiology MeSH
- Cryptosporidiosis * epidemiology MeSH
- Humans MeSH
- Roma * MeSH
- Pregnancy MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe epidemiology MeSH
- Romania MeSH
- Europe, Eastern epidemiology MeSH
Within the microsporidian genus Encephalitozoon, three species, Encephalitozoon cuniculi, Encephalitozoon hellem and Encephalitozoon intestinalis have been described. Several orders of the Class Aves (Passeriformes, Psittaciformes, Apodiformes, Ciconiiformis, Gruiformes, Columbiformes, Suliformes, Podicipediformes, Anseriformes, Struthioniformes, Falconiformes) and of the Class Mammalia (Rodentia, Lagomorpha, Primates, Artyodactyla, Soricomorpha, Chiroptera, Carnivora) can become infected. Especially E. cuniculi has a very broad host range while E. hellem is mainly distributed amongst birds. E. intestinalis has so far been detected only sporadically in wild animals. Although genotyping allows the identification of strains with a certain host preference, recent studies have demonstrated that they have no strict host specificity. Accordingly, humans can become infected with any of the four strains of E. cuniculi as well as with E. hellem or E. intestinalis, the latter being the most common. Especially, but not exclusively, immunocompromised people are at risk. Environmental contamination with as well as direct transmission of Encephalitozoon is therefore highly relevant for public health. Moreover, endangered species might be threatened by the spread of pathogens into their habitats. In captivity, clinically overt and often fatal disease seems to occur frequently. In conclusion, Encephalitozoon appears to be common in wild warm-blooded animals and these hosts may present important reservoirs for environmental contamination and maintenance of the pathogens. Similar to domestic animals, asymptomatic infections seem to occur frequently but in captive wild animals severe disease has also been reported. Detailed investigations into the epidemiology and clinical relevance of these microsporidia will permit a full appraisal of their role as pathogens.
- Keywords
- Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitzoon hellem, Genotype, Reservoir, Zoonosis,
- Publication type
- Journal Article MeSH
- Review MeSH