Most cited article - PubMed ID 24477636
The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-hole
Although 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, I) derivatives had been computed to have positive values of the heat of formation, it was possible to prepare them. The corresponding solid-state structures were computationally analyzed. Electrostatic potential computations indicated the presence of highly positive σ-holes in the case of heavy halogens. Surprisingly, the halogen•••π interaction formed by the Br atom was found to be more favorable than that of I.
- Keywords
- halogen bond, icosahedral boron cluster, sigma hole,
- MeSH
- Halogenation MeSH
- Halogens chemistry MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Boron Compounds chemical synthesis chemistry MeSH
- Chemistry Techniques, Synthetic MeSH
- Carbon chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Halogens MeSH
- Boron Compounds MeSH
- Carbon MeSH
Essential to understanding life, the biomolecular phenomena have been an important subject in science, therefore a necessary path to be covered to make progress in human knowledge. To fully comprehend these processes, the non-covalent interactions are the key. In this review, we discuss how specific protein-ligand interactions can be efficiently described by low computational cost methods, such as Molecular Mechanics (MM). We have taken as example the case of the halogen bonds (XB). Albeit generally weaker than the hydrogen bonds (HB), the XBs play a key role to drug design, enhancing the affinity and selectivity toward the biological target. Along with the attraction between two electronegative atoms in XBs explained by the σ-hole model, important orbital interactions, as well as relief of Pauli repulsion take place. Nonetheless, such electronic effects can be only well-described by accurate quantum chemical methods that have strong limitations dealing with supramolecular systems due to their high computational cost. To go beyond the poor description of XBs by MM methods, reparametrizing the force-fields equations can be a way to keep the balance between accuracy and computational cost. Thus, we have shown the steps to be considered when parametrizing force-fields to achieve reliable results of complex non-covalent interactions at MM level for In Silico drug design methods.
- Keywords
- drug design, force-fields, halogen bonds, molecular dynamics, non-covalent interactions,
- Publication type
- Journal Article MeSH
- Review MeSH
This paper presents a study of pnictogen bonding in a series of pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. The whole series was studied computationally. Moreover, the pyrazine complexes with PCl5 and SbCl5 were prepared and characterized experimentally. It was found that the Pn-N distances are only slightly elongated when compared to the sum of covalent radii. The conformation of PnX5 changed considerably upon the complex formation, which resulted in a significant change of the dipole moment of the PnX5 fragment and a considerably more positive σ-hole on the pnictogen atom. Finally, interaction energies were decomposed in order to provide a deeper insight into the nature of the studied pnictogen-bonded complexes. Graphical abstract The conformation of PnX5 changed considerably upon the complex formation, which resulted in a considerably more positive σ-hole on the pnictogen atom.
- Keywords
- Charge transfer, Deformation energy, Interaction energy decomposition, Pnictogen bond, X-ray crystallography, σ-hole magnitude,
- Publication type
- Journal Article MeSH