Could Quantum Mechanical Properties Be Reflected on Classical Molecular Dynamics? The Case of Halogenated Organic Compounds of Biological Interest
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
31921771
PubMed Central
PMC6923750
DOI
10.3389/fchem.2019.00848
Knihovny.cz E-resources
- Keywords
- drug design, force-fields, halogen bonds, molecular dynamics, non-covalent interactions,
- Publication type
- Journal Article MeSH
- Review MeSH
Essential to understanding life, the biomolecular phenomena have been an important subject in science, therefore a necessary path to be covered to make progress in human knowledge. To fully comprehend these processes, the non-covalent interactions are the key. In this review, we discuss how specific protein-ligand interactions can be efficiently described by low computational cost methods, such as Molecular Mechanics (MM). We have taken as example the case of the halogen bonds (XB). Albeit generally weaker than the hydrogen bonds (HB), the XBs play a key role to drug design, enhancing the affinity and selectivity toward the biological target. Along with the attraction between two electronegative atoms in XBs explained by the σ-hole model, important orbital interactions, as well as relief of Pauli repulsion take place. Nonetheless, such electronic effects can be only well-described by accurate quantum chemical methods that have strong limitations dealing with supramolecular systems due to their high computational cost. To go beyond the poor description of XBs by MM methods, reparametrizing the force-fields equations can be a way to keep the balance between accuracy and computational cost. Thus, we have shown the steps to be considered when parametrizing force-fields to achieve reliable results of complex non-covalent interactions at MM level for In Silico drug design methods.
Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
Department of Chemistry Federal University of Lavras Lavras Brazil
See more in PubMed
Adesokan A. A., Roberts V. A., Lee K. W., Lins R. D., Briggs J. M. (2004). Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking. J. Med. Chem. 47, 821–828. 10.1021/jm0301890 PubMed DOI
Alder B. J., Wainwright T. E. (1959). Studies in molecular dynamics. General method. J. Chem. Phys. 31:459 10.1063/1.1730376 DOI
Allen R. E., de Wette F. W., Rahman A. (1969). Calculation of dynamical surface properties of noble-gas crystals. II. Phys. Rev. 179:887 10.1103/PhysRev.179.887 DOI
Allinger N. L. (1977). Conformational analysis. 130. MM2. a hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134. 10.1021/ja00467a001 DOI
Allinger N. L., Chen K., Lii J. H. (1996). An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 17, 642–668. 10.1002/(SICI)1096-987X(199604)17:5/6<;642::AID-JCC6>;3.0.CO;2-U DOI
Allinger N. L., Thomas Tribble M., Miller M. A., Wertz D. H. (1971). Conformational analysis. LXIX. an improved force field for the calculation of the structures and energies of hydrocarbons. J. Am. Chem. Soc. 93, 1637–1648. 10.1021/ja00736a012 DOI
Allinger N. L., Yuh Y. H., Lii J. H. (1989). Molecular mechanics. the MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566. 10.1021/ja00205a001 DOI
Andreussi O., Prandi I. G., Campetella M., Prampolini G., Mennucci B. (2017). Classical force fields tailored for QM applications: is it really a feasible strategy? J. Chem. Theory Comput. 13, 4636–4648. 10.1021/acs.jctc.7b00777 PubMed DOI
Auffinger P., Hays F. A., Westhof E., Ho P. S. (2004). Halogen bonds in biological molecules. Proc. Natl. Acad. Sci. U.S.A. 100, 8742–8747. 10.1073/pnas.0407607101 PubMed DOI PMC
Aytenfisu A. H., Spasic A., Grossfield A., Stern H. A., Mathews D. H. (2017). Revised RNA dihedral parameters for the Amber force field improve RNA molecular dynamics. J. Chem. Theory Comput. 13, 900–915. 10.1021/acs.jctc.6b00870 PubMed DOI PMC
Barone V., Cacelli I., De Mitri N., Licari D., Monti S., Prampolini G. (2013). Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data. Phys. Chem. Chem. Phys. 15, 3736–3751. 10.1039/c3cp44179b PubMed DOI
Ben-Naim A. (2012). Levinthal's question revisited, and answered. J. Biomol. Struct. Dyn. 30, 113–124. 10.1080/07391102.2012.674286 PubMed DOI
Bernardes C. E. S., Canongia Lopes J. N. (2017). Modeling halogen bonds in ionic liquids: a force field for imidazolium and halo-imidazolium derivatives. J. Chem. Theory Comput. 13, 6167–6176. 10.1021/acs.jctc.7b00645 PubMed DOI
Bora P. L., Novák M., Novotný J., Foroutan-Nejad C., Marek R. (2017). Supramolecular covalence in bifurcated chalcogen bonding. Chem. Eur. J. 23, 7315–7323. 10.1002/chem.201700179 PubMed DOI
Carter M., Rappé A. K., Ho P. S. (2012). Scalable anisotropic shape and electrostatic models for biological bromine halogen bonds. J. Chem. Theory Comput. 8, 2461–2473. 10.1021/ct3001969 PubMed DOI
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti D. S. (2014), AMBER 14. San Francisco, CA: University of California.
Cavallo G., Metrangolo P., Milani R., Pilati T., Priimagi A., Resnati G., et al. . (2016). The halogen bond. Chem. Rev. 116, 2478–2601. 10.1021/acs.chemrev.5b00484 PubMed DOI PMC
Cerezo J., Prampolini G., Cacelli I. (2018). Developing accurate intramolecular force fields for conjugated systems through explicit coupling terms. Theor. Chem. Acc. 137:80 10.1007/s00214-018-2254-8 DOI
Clark T., Hennemann M., Murray J. S., Politzer P. (2007). Halogen bonding: the σ-Hole. J. Mol. Model. 13, 291–296. 10.1007/s00894-006-0130-2 PubMed DOI
Davis J. E., Patel S. (2010). Revised charge equilibration parameters for more accurate hydration free energies of alkanes. Chem. Phys. Lett. 484, 173–176. 10.1016/j.cplett.2009.09.061 PubMed DOI PMC
Dickson C. J., Madej B. D., Skjevik A. A., Betz R. M., Teigen K., Gould I. R., et al. . (2014). Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10, 865–879. 10.1021/ct4010307 PubMed DOI PMC
Dominikowska J., Bickelhaupt F. M., Palusiak M., Fonseca Guerra C. (2016). Source of cooperativity in halogen-bonded haloamine tetramers. Chem. Phys. Chem. 17, 474–480. 10.1002/cphc.201501130 PubMed DOI
Du L., Gao J., Bi F., Wang L., Liu C. (2013). A polarizable ellipsoidal force field for halogen bonds. J. Comput. Chem. 34, 2032–2040. 10.1002/jcc.23362 PubMed DOI
Esrafili M. D., Ahmadi B. (2012). A theoretical investigation on the nature of Cl…N and Br…N halogen bonds in FArX…NCY complexes (X = Cl, Br and Y = H, F, Cl, Br, OH, NH2, CH3 and CN). Comput. Theor. Chem. 997, 77–82. 10.1016/j.comptc.2012.07.038 DOI
Franchini D., Dapiaggi F., Pieraccini S., Forni A., Sironi M. (2018). Halogen bonding in the framework of classical force fields: the case of chlorine. Chem. Phys. Lett. 712, 89–94. 10.1016/j.cplett.2018.09.052 DOI
Freitas L. B., Borgati T. F., de Freitas R. P., Ruiz A. L., Marchetti G. M., de Carvalho J. E., et al. . (2014). Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. Eur. J. Med. Chem. 84, 595–604. 10.1016/j.ejmech.2014.07.061 PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al. (2009). Gaussian 09, Revision D.01. Wallingford, CT: Gaussian Inc.
Hongo K., Cuong N. T., Maezono R. (2013). The importance of electron correlation on stacking interaction of adenine-thymine base-pair step in B-DNA: a quantum Monte Carlo study. J. Chem. Theory Comput. 9, 1081–1086. 10.1021/ct301065f PubMed DOI
Huber S. M., Scanlon J. D., Jimenez-Izal E., Ugalde J. M., Infante I. (2013). On the directionality of halogen bonding. Phys. Chem. Chem. Phys. 15:10350. 10.1039/c3cp50892g PubMed DOI
Humphrey W., Dalke A., Schulten K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI
Ibrahim M. A. (2011). Molecular mechanical study of halogen bonding in drug discovery. J. Comput. Chem. 32, 2564–2574. 10.1002/jcc.21836 PubMed DOI
Ibrahim M. A. (2012). Molecular mechanical perspective on halogen bonding. J. Mol. Model. 18, 4625–4638. 10.1007/s00894-012-1454-8 PubMed DOI
Jorgensen W. L., Maxwell D. S., Tirado-Rives J. (1996). Development and testing of the OLPS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236. 10.1021/ja9621760 DOI
Jurinovich S., Viani L., Prandi I. G., Mennucci B. (2015). Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II. Phys. Chem. Chem. Phys. 17, 14405–14416. 10.1039/C4CP05647G PubMed DOI
Koebel M. R., Schmadeke G., Posner R. G., Sirimulla S. (2016). AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina. J. Chem. Inform. 8:27. 10.1186/s13321-016-0139-1 PubMed DOI PMC
Kolár M., Hobza P., Bronowska A. K. (2013). Plugging the explicit σ-holes in molecular docking. Chem. Commun. 49, 981–983. 10.1039/C2CC37584B PubMed DOI
Kolár M., Hostaš J., Hobza P. (2014). The strength and directionality of a halogen bond are co-determined by the magnitude and size of the σ-Hole. Phys. Chem. Chem. Phys. 16, 9987–9996. 10.1039/C3CP55188A PubMed DOI
Langley C. H., Allinger N. L. (2002). Molecular mechanics (MM4) calculations on amides. J. Phys. Chem. A 106, 5638–5652. 10.1021/jp014426r DOI
Langley C. H., Lii J. H., Allinger N. L. (2001). Molecular mechanics (MM4) calculations on carbonyl compounds part I: aldehydes. J. Comput. Chem. 24, 1283–1286. 10.1002/jcc.1177 DOI
Lennard-Jones J. E. (1931). Cohesion. Proc. Phys. Soc. 43, 461–482. 10.1088/0959-5309/43/5/301 DOI
Li P., Merz K. M., Jr. (2017). Metal ion modeling using classical mechanics. Chem. Rev. 117, 1564–1686. 10.1021/acs.chemrev.6b00440 PubMed DOI PMC
Lii J. H., Allinger N. L. (1989a). Molecular mechanics. the MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J. Am. Chem. Soc. 111, 8566–8575. 10.1021/ja00205a002 DOI
Lii J. H., Allinger N. L. (1989b). Molecular mechanics. the MM3 force field for hydrocarbons. 3. The van Der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 111, 8576–8582. 10.1021/ja00205a003 DOI
Lin F. Y., MacKerell A. D. (2018). Polarizable empirical force field for halogen-containing compounds based on the classical drude oscillator. J. Chem. Theory Comput. 14, 1083–1098. 10.1021/acs.jctc.7b01086 PubMed DOI PMC
Lu Y., Liu Y., Xu Z., Li H., Liu H., Zhu W. (2012). Halogen bonding for rational drug design and new drug discovery. Expert Opin. Drug Discov. 7, 375–383. 10.1517/17460441.2012.678829 PubMed DOI
Lu Y., Shi T., Wang Y., Yang H., Yan X., Luo X., et al. . (2009). Halogen bonding-a novel interaction for rational drug design? J. Med. Chem. 52, 2854–2862. 10.1021/jm9000133 PubMed DOI
Lu Y., Wang Y., Zhu W. (2010). Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys. Chem. Chem. Phys. 12, 4543–4551. 10.1039/b926326h PubMed DOI
Malde A. K., Zuo L., Breeze M., Stroet M., Poger D., Nair P. C., et al. . (2011). An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7, 4026–4037. 10.1021/ct200196m PubMed DOI
Martins T. L. C., Ramalho T. C., Figueroa-Villar J. D., Flores A. F. C., Pereira C. M. P. (2003). Theoretical and experimental 13C and 15N NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 41, 983–988. 10.1002/mrc.1299 DOI
Mayne C. G., Saam J., Schulten K., Tajkhorshid E., Gumbart J. C. (2013). Rapid parameterization of small molecules using the force field toolkit. J. Comput. Chem. 34, 2757–2770. 10.1002/jcc.23422 PubMed DOI PMC
McDaniel J. G., Choi E., Son C. Y., Schmidt J. R., Yethiraj A. (2016). Ab Initio force fields for imidazolium-based ionic liquids. J. Phys. Chem. B 120, 7024–7036. 10.1021/acs.jpcb.6b05328 PubMed DOI
Mendez L., Henriquez G., Sirimulla S., Narayan M. (2017). Looking back, looking forward at halogen bonding in drug discovery. Molecules 22, 22–25. 10.3390/molecules22091397 PubMed DOI PMC
Nair P. C., Miners J. O. (2014). Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacol. 2:4. 10.1186/s40203-014-0004-8 PubMed DOI PMC
Nevins N., Chen K., Allinger N. L. (1996). Molecular mechanics (MM4) calculations on alkenes. J. Comput. Chem. 17, 669–694. 10.1002/(SICI)1096-987X(199604)17:5/6<;669::AID-JCC7>;3.0.CO;2-S DOI
Novák M., Foroutan-Nejad C., Marek R. (2015). Asymmetric bifurcated halogen bonds. Phys. Chem. Chem. Phys. 17, 6440–6450. 10.1039/C4CP05532B PubMed DOI
Nunes R., Vila-Viçosa D., Machuqueiro M., Costa P. J. (2018). Biomolecular simulations of halogen bonds with a GROMOS force field. J. Chem. Theory Comput. 14, 5383–5392. 10.1021/acs.jctc.8b00278 PubMed DOI
Nziko V. P. N., Scheiner N. (2016). Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3. Phys. Chem. Chem. Phys. 18, 3581–3590. 10.1039/C5CP07545A PubMed DOI
Paschek D., Geiger A. (2002). MOSCITO 4. Dortmund: Department of Physical Chemistry; University of Dortmund.
Pérez-Conesa S., Torrico F., Martínez J. M., Pappalardo R. R., Marcos E. S. (2019). A general study of actinyl hydration by molecular dynamics simulations using ab initio force fields. J. Chem. Phys. 150:104504. 10.1063/1.5083216 PubMed DOI
Poater J., Swart M., Fonseca Guerra C., Bickelhaupt F. M. (2011). Selectivity in DNA replication. interplay of steric shape, hydrogen bonds, π-stacking and solvent effects. Chem. Commun. 47, 7326–7328. 10.1039/c0cc04707d PubMed DOI
Politzer P., Lane P., Concha M. C., Ma Y., Murray J. S. (2007). An overview of halogen bonding. J. Mol. Model. 13, 305–311. 10.1007/s00894-006-0154-7 PubMed DOI
Politzer P., Murray J. S., Clark T. (2013). Halogen bonding and other σ-hole interactions: a perspective. Phys. Chem. Chem. Phys. 15, 11178–11189. 10.1039/c3cp00054k PubMed DOI
Politzer P., Murray J. S., Concha M. C. (2008). σ-hole bonding between like atoms; a fallacy of atomic charges. J. Mol. Model. 14, 659–665. 10.1007/s00894-008-0280-5 PubMed DOI
Politzer P., Riley K. E., Bulat F. A., Murray J. S. (2012). Perspectives on halogen bonding and other σ-hole interactions: lex parsimoniae (Occam's Razor). Comput. Theor. Chem. 998, 2–8. 10.1016/j.comptc.2012.06.007 DOI
Poznanski J., Shugar D. (2013). Halogen bonding at the ATP binding site of protein kinases: preferred geometry and topology of ligand binding. Biochim. Biophys. Acta 1834, 1381–1396. 10.1016/j.bbapap.2013.01.026 PubMed DOI
Prandi I. G., Viani L., Andreussi O., Mennucci B. (2016). Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: the case of carotenoids. J. Comput. Chem. 37, 981–991. 10.1002/jcc.24286 PubMed DOI
Ramalho T. C., da Cunha E. F. F. (2011). Thermodynamic framework of the interaction between protein and solvent drives protein folding. J. Biomol. Struct. Dyn. 28, 645–646. 10.1080/073911011010524975 PubMed DOI
Ramalho T. C., Rocha M. V. J., da Cunha E. F. F., Freitas M. P. (2009). The search for new COX-2 inhibitors: a review of 2002-2008 patents. Expert Opin. Ther. Pat. 19, 1193–1228. 10.1517/13543770903059125 PubMed DOI
Rendine S., Pieraccini S., Forni A., Sironi M. (2011). Halogen bonding in ligand–receptor systems in the framework of classical force fields. Phys. Chem. Chem. Phys. 13, 19508–19516. 10.1039/c1cp22436k PubMed DOI
Riley K. E., Murray J. S., Politzer P., Concha M. C., Hobza P. (2009). Br…O complexes as probes of factors affecting halogen bonding: interactions of bromobenzenes and bromopyrimidines with acetone. J. Chem. Theory Comput. 5, 155–163. 10.1021/ct8004134 PubMed DOI
Riley K. E., Rezáč J., Hobza P. (2013). Competition between halogen dihalogen and hydrogen bonds in bromo- and iodomethanol dimers. J. Mol. Model. 19, 2879–2883. 10.1007/s00894-012-1727-2 PubMed DOI
Santos L. A., da Cunha E. F. F., Freitas M. P., Ramalho T. C. (2014). Hydrophobic noncovalent interactions of inosine-phenylalanine: a theoretical model for investigating the molecular recognition of nucleobases. J. Phys. Chem. A 118, 5808–5817. 10.1021/jp411230w PubMed DOI
Santos L. A., da Cunha E. F. F., Ramalho T. C. (2017). Toward the classical description of halogen bonds: a quantum based generalized empirical potential for fluorine, chlorine, and bromine. J. Phys. Chem. A 121, 2442–2451. 10.1021/acs.jpca.6b13112 PubMed DOI
Scholfield M. R., Ford M. C., Vander Zanden C. M., Billman M. M., Ho P. S., Rappé A. K. (2015). Force field model of periodic trends in biomolecular halogen bonds. J. Phys. Chem. B 119, 9140–9149. 10.1021/jp509003r PubMed DOI PMC
Schuler L. D., Daura X., van Gunsteren W. F. (2001). An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J. Comput. Chem. 22, 1205–1218. 10.1002/jcc.1078 DOI
Soteras Gutiérrez I., Lin F. Y., Vanommeslaeghe K., Lemkul J. A., Armacost K. A., Brooks C. L., et al. . (2016). Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligand–protein interactions. Bioorg. Med. Chem. 24, 4812–4825. 10.1016/j.bmc.2016.06.034 PubMed DOI PMC
van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718. 10.1002/jcc.20291 PubMed DOI
Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., et al. . (2010). CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690. 10.1002/jcc.21367 PubMed DOI PMC
Wang C., Danovich D., Mo Y., Shaik S. (2014). On the nature of the halogen bond. J. Chem. Theory Comput. 10, 3726–3737. 10.1021/ct500422t PubMed DOI
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 PubMed DOI
Wilcken R., Zimmermann M. O., Lange A., Joerger A. C., Boeckler F. M. (2013). Principles and applicationsof halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 56, 1363–1388. 10.1021/jm3012068 PubMed DOI
Wolters L. P., Bickelhaupt F. M. (2012). Halogen bonding versus hydrogen bonding: a molecular orbital perspective. Chem. Open 1, 96–105. 10.1002/open.201100015 PubMed DOI PMC
Wolters L. P., Schyman P., Pavan M. J., Jorgensen W. L., Bickelhaupt F. M., Kozuch S. (2014). The many faces of halogen bonding: a review of theoretical models and methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 523–540. 10.1002/wcms.1189 DOI
Wolters L. P., Smits N. W. G., Fonseca Guerra C. (2015). Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in n-halo-guanine quartets. Phys. Chem. Chem. Phys. 17, 1585–1592. 10.1039/C4CP03740E PubMed DOI
Wu X., Sun Y., Li C., Yang W. (2012). Parametric effects of the potential energy function on the geometrical features of ternary Lennard-Jones clusters. J. Phys. Chem. A 116, 8218–8225. 10.1021/jp3037395 PubMed DOI
Xu P., Guidez E. B., Bertoni C., Gordon M. S. (2018). Perspective: ab initio force field methods derived from quantum mechanics. J. Chem. Phys. 148:090901 10.1063/1.5009551 DOI
Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019)