Nejvíce citovaný článek - PubMed ID 24525037
Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement
The histopathological examination of the periprosthetic soft tissue and bone has contributed to the identification and description of the morphological features of adverse local tissue reactions (ALTR)/adverse reactions to metallic debris (ARMD). The need of a uniform vocabulary for all disciplines involved in the diagnosis and management of ALTR/ARMD and of clarification of the parameters used in the semi-quantitative scoring systems for their classification has been considered a pre-requisite for a meaningful interdisciplinary evaluation.This review of key terms used for ALTR/ARMD has resulted in the following outcomes: (a) pseudotumor is a descriptive term for ALTR/ARMD, classifiable in two main types according to its cellular composition defining its clinical course; (b) the substitution of the term metallosis with presence of metallic wear debris, since it cannot be used as a category of implant failure or histological diagnosis; (c) the term aseptic lymphocytic-dominated vasculitis- associated lesion (ALVAL) should be replaced due to the absence of a vasculitis with ALLTR/ALRMD for lymphocytic-predominant and AMLTR/AMRMD for macrophage-predominant reaction.This review of the histopathological classifications of ALTR/ARMD has resulted in the following outcomes: (a) distinction between cell death and tissue necrosis; (b) the association of corrosion metallic debris with adverse local lymphocytic reaction and tissue necrosis; (c) the importance of cell and particle debris for the viscosity and density of the lubricating synovial fluid; (d) a consensus classification of lymphocytic infiltrate in soft tissue and bone marrow; (e) evaluation of the macrophage infiltrate in soft tissues and bone marrow; (f) classification of macrophage induced osteolysis/aseptic loosening as a delayed type of ALTR/ARMD; (g) macrophage motility and migration as possible driving factor for osteolysis; (h) usefulness of the histopathological examination for the natural history of the adverse reactions, radiological correlation, post-marketing surveillance, and implant registries.The review of key terms used for the description and histopathological classification of ALTR/ARMD has resulted in a comprehensive, new standard for all disciplines involved in their diagnosis, clinical management, and long-term clinical follow-up. Cite this article: EFORT Open Rev 2021;6:399-419. DOI: 10.1302/2058-5241.6.210013.
Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone-implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.
OBJECTIVE: Aseptic loosening (AL) is the most frequent long-term reason for revision of total knee arthroplasty (TKA) affecting about 15-20% patients within 20 years after the surgery. Although there is a solid body of evidence about the crucial role of inflammation in the AL pathogenesis, scared information on inflammation signature and its time-axis in tissues around TKA exists. DESIGN: The inflammation protein signatures in pseudosynovial tissues collected at revision surgery from patients with AL (AL, n = 12) and those with no clinical/radiographic signs of AL (non-AL, n = 9) were investigated by Proximity Extension Assay (PEA)-Immunoassay and immunohistochemistry. RESULTS: AL tissues had elevated levels of TNF-family members sTNFR2, TNFSF14, sFasL, sBAFF, cytokines/chemokines IL8, CCL2, IL1RA/IL36, sIL6R, and growth factors sAREG, CSF1, comparing to non-AL. High interindividual variability in protein levels was evident particularly in non-AL. Levels of sTNFR2, sBAFF, IL8, sIL6R, and MPO discriminated between AL and non-AL and were associated with the time from index surgery, suggesting the cumulative character of inflammatory osteolytic response to prosthetic byproducts. The source of elevated inflammatory molecules was macrophages and multinucleated osteoclast-like cells in AL and histiocytes and osteoclast-like cells in non-AL tissues, respectively. All proteins were present in higher levels in osteoclast-like cells than in macrophages. CONCLUSIONS: Our study revealed a differential inflammation signature between AL and non-AL stages of TKA. It also highlighted the unique patient's response to TKA in non-AL stages. Further confirmation of our preliminary results on a larger cohort is needed. Analysis of the time-axis of processes ongoing around TKA implantation may help to understand the mechanisms driving periprosthetic bone resorption needed for diagnostic/preventative strategies.
- MeSH
- cytokiny metabolismus MeSH
- histiocyty metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy metabolismus patologie MeSH
- osteoklasty metabolismus patologie MeSH
- reoperace MeSH
- resorpce kosti komplikace metabolismus patofyziologie chirurgie MeSH
- selhání protézy škodlivé účinky MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- totální endoprotéza kolene škodlivé účinky MeSH
- zánět komplikace metabolismus patofyziologie chirurgie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH