macrophages
Dotaz
Zobrazit nápovědu
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
- Klíčová slova
- M1/M2, cancer, differentiation, infection, macrophages, polarisation,
- MeSH
- buněčná diferenciace MeSH
- cytokiny * MeSH
- fenotyp MeSH
- lidé MeSH
- makrofágy * MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny * MeSH
Tumor-associated macrophages are an important part of the tumor microenvironment. The presence of certain populations of macrophages within tumor tissue may be associated with either better or worse disease prognosis. The study of these cells is currently receiving a great deal of attention, with the most important topics of investigation raised being: the typification of subpopulations of tumor-associated macrophages; identification of the prognostic significance of population density and distribution of macrophages in the tumor microenvironment; ways to influence macrophage activity, migration and differentiation within the tumor. The answers to these questions can improve the efficiency of immunoterapy for malignancies. The presented article briefly reviews recent findings on tumor-associated macrophages in solid malignancies.
- Klíčová slova
- alternatively activated macrophages (M2), classically activated macrophages (M1), resident tissue macrophages (NTAMs), tumor microenvironment (TME), tumor-associated macrophages (TAMs),
- MeSH
- lidé MeSH
- makrofágy spojené s nádory * MeSH
- makrofágy patologie MeSH
- nádorové mikroprostředí MeSH
- nádory * MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Klíčová slova
- MACROPHAGES *, MUSCLES/anatomy and histology *,
- MeSH
- kmenové buňky * MeSH
- kosterní svaly * MeSH
- makrofágy * MeSH
- příčně pruhované svaly * MeSH
- svaly anatomie a histologie MeSH
- Publikační typ
- časopisecké články MeSH
Upon inflammation, monocyte-derived macrophages (MΦ) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and efficient initial response (GM-MΦ) and a good resolution (M-MΦ) of the inflammatory process. The functional activity of polarized MΦ is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MΦ that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MΦ secretome involved in the shedding of soluble endoglin. We find that the GM-MΦ secretome contains metalloprotease 12 (MMP-12), a GM-MΦ specific marker that may account for the anti-angiogenic activity of the GM-MΦ secretome. Cell surface endoglin is present in both GM-MΦ and M-MΦ, but soluble endoglin is only detected in GM-MΦ culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MΦ and endothelial cells. These data demonstrate a direct correlation between GM-MΦ polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.
- Klíčová slova
- MMP-12, endoglin, endothelial cells, inflammation, macrophages, monocytes,
- MeSH
- biologické modely MeSH
- endoglin genetika metabolismus MeSH
- endoteliální buňky metabolismus MeSH
- exprese genu MeSH
- faktor stimulující granulocyto-makrofágové kolonie metabolismus MeSH
- faktor stimulující kolonie makrofágů metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- makrofágy imunologie metabolismus MeSH
- matrixová metaloproteinasa 12 metabolismus MeSH
- mediátory zánětu metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- náchylnost k nemoci MeSH
- zánět etiologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endoglin MeSH
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- faktor stimulující kolonie makrofágů MeSH
- matrixová metaloproteinasa 12 MeSH
- mediátory zánětu MeSH
In the body of multicellular organisms, macrophages play an indispensable role in maintaining tissue homeostasis by removing old, apoptotic and damaged cells. In addition, macrophages allow significant remodeling of body plans during embryonic morphogenesis, regeneration and metamorphosis. Although the huge amount of organic matter that must be removed during these processes represents a potential source of nutrients, their further use by the organism has not yet been addressed. Here, we document that, during metamorphosis, Drosophila larval adipose tissue is infiltrated by macrophages, which remove dying adipocytes by efferocytosis and engulf leaking RNA-protein granules and lipids. Consequently, the infiltrating macrophages transiently adopt the adipocyte-like metabolic profile to convert remnants of dying adipocytes to lipoproteins and storage peptides that nutritionally support post-metamorphic development. This process is fundamental for the full maturation of ovaries and the achievement of early fecundity of individuals. Whether macrophages play an analogous role in other situations of apoptotic cell removal remains to be elucidated.
- Klíčová slova
- Drosophila macrophages, Efferocytosis, Lipoproteins, Macrophage metabolic polarization, Metamorphosis, Post-metamorphic maturation,
- MeSH
- Drosophila * MeSH
- lidé MeSH
- makrofágy * metabolismus MeSH
- tuková tkáň metabolismus MeSH
- tukové buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS: The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS: PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
- Klíčová slova
- Differentiation, HAE, Macrophages, Monocyte, PLAUR, uPAR,
- MeSH
- alternativní sestřih genetika MeSH
- hereditární angioedémy * genetika patologie MeSH
- leukocyty MeSH
- lidé MeSH
- makrofágy patologie MeSH
- monocyty * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- PLAUR protein, human MeSH Prohlížeč
Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here, we used adults of the fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting the conservation of this cellular response between insects and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection.
- Klíčová slova
- D. melanogaster, HIF1α, Warburg effect, aerobic glycolysis, bacterial infection, immunology, immunometabolism, inflammation, polarization of macrophages,
- MeSH
- aerobióza MeSH
- Drosophila imunologie MeSH
- glykolýza * MeSH
- makrofágy imunologie metabolismus MeSH
- Streptococcus imunologie MeSH
- streptokokové infekce imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
- Klíčová slova
- Immunomodulation, Immunotherapy, Macrophages, Tumor Biomarkers, Tumor Microenvironment,
- MeSH
- epiteliální ovariální karcinom terapie patologie MeSH
- imunoterapie MeSH
- karcinom * patologie MeSH
- lidé MeSH
- makrofágy spojené s nádory patologie MeSH
- makrofágy MeSH
- nádorové mikroprostředí MeSH
- nádory vaječníků * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Glucocorticoids are potent anti-inflammatory drugs, although their use is associated with severe side effects. Loading glucocorticoids into suitable nanocarriers can significantly reduce these undesirable effects. Macrophages play a crucial role in inflammation, making them strategic targets for glucocorticoid-loaded nanocarriers. The main objective of this study is to develop a glucocorticoid-loaded PLGA nanocarrier specifically targeting liver macrophages, thereby enabling the localized release of glucocorticoids at the site of inflammation. Dexamethasone acetate (DA)-loaded PLGA nanospheres designed for passive macrophage targeting are synthesized using the nanoprecipitation method. Two types of PLGA NSs in the size range of 100-300 nm are prepared, achieving a DA-loading efficiency of 19 %. Sustained DA release from nanospheres over 3 days is demonstrated. Flow cytometry analysis using murine bone marrow-derived macrophages demonstrates the efficient internalization of fluorescent dye-labeled PLGA nanospheres, particularly into pro-inflammatory macrophages. Significant down-regulation in pro-inflammatory cytokine genes mRNA is observed without apparent cytotoxicity after treatment with DA-loaded PLGA nanospheres. Subsequent experiments in mice confirm liver macrophage-specific nanospheres accumulation following intravenous administration using in vivo imaging, flow cytometry, and fluorescence microscopy. Taken together, the data show that the DA-loaded PLGA nanospheres are a promising drug-delivery system for the treatment of inflammatory liver diseases.
- Klíčová slova
- PLGA nanospheres, biodegradable nanoparticles, glucocorticoids, liver inflammation, macrophages,
- MeSH
- dexamethason * analogy a deriváty farmakologie chemie MeSH
- játra * cytologie metabolismus účinky léků patologie MeSH
- kopolymer kyseliny glykolové a mléčné MeSH
- kyselina mléčná * chemie MeSH
- kyselina polyglykolová * chemie MeSH
- lékové transportní systémy MeSH
- makrofágy * účinky léků metabolismus MeSH
- myši MeSH
- nanokuličky * chemie MeSH
- nosiče léků chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dexamethason * MeSH
- dexamethasone acetate MeSH Prohlížeč
- kopolymer kyseliny glykolové a mléčné MeSH
- kyselina mléčná * MeSH
- kyselina polyglykolová * MeSH
- nosiče léků MeSH
The study focuses on the effects of fluvastatin on immunomarkers of the M1 and M2 macrophages and its direct role in macrophage (M0) polarization. Moreover, it investigates the dependency of immunomodulatory properties of fluvastatin on the mevalonate pathway. Macrophages (M0, M1, M2), differentiated from human blood monocytes, were treated with fluvastatin. Mevalonate and geranylgeranyl pyrophosphate intermediates were introduced to assess the mevalonate pathway dependence. The immunomarkers were evaluated with qPCR, ELISA, Griess assay, and flow cytometry. Fluvastatin significantly reduces the pro-inflammatory gene expression (NFκB, IL-1β, IL-6, iNOS) in M1 while enhancing the anti-inflammatory markers (Arg-1, TGFβ) in M2 macrophages. The production of the TNFα, IL-1β, and IL-6 cytokines is reduced in M1, and IL-10 production increased in M2 macrophages. Fluvastatin decreases the iNOS activity in M1 macrophages. The intermediates reverse the fluvastatin's effects on anti-inflammatory gene expression by M2 macrophages, cytokine production (by M1 and M2 macrophages), and iNOS activity (by M1 macrophages). Their impact on surface marker expression was somewhat limited. These findings demonstrate that fluvastatin exerts anti-inflammatory effects on polarized macrophages without affecting polarization per se and also highlight the dependency on the mevalonate pathway. This study deepens the understanding of statins' immunomodulatory mechanisms, suggesting potential applications in treating inflammatory diseases.
- Klíčová slova
- Fluvastatin, Inflammation, Macrophages, Mevalonate pathway, Polarization,
- MeSH
- antiflogistika * farmakologie MeSH
- cytokiny metabolismus MeSH
- fluvastatin * farmakologie MeSH
- kyselina mevalonová * metabolismus MeSH
- lidé MeSH
- makrofágy * účinky léků metabolismus imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika * MeSH
- cytokiny MeSH
- fluvastatin * MeSH
- kyselina mevalonová * MeSH