Nejvíce citovaný článek - PubMed ID 24587742
The relationship between climbing ability and physiological responses to rock climbing
BACKGROUND: Climbing is an intricate sport composed of various disciplines, holds, styles, distances between holds, and levels of difficulty. In highly skilled climbers the potential for further strength-specific adaptations to increase performance may be marginal in elite climbers. With an eye on the upcoming 2024 Paris Olympics, more climbers are trying to maximize performance and improve training strategies. The relationships between muscular strength and climbing performance, as well as the role of strength in injury prevention, remain to be fully elucidated. This narrative review seeks to discuss the current literature regarding the effect of resistance training in improving maximal strength, muscle hypertrophy, muscular power, and local muscular endurance on climbing performance, and as a strategy to prevent injuries. MAIN BODY: Since sport climbing requires exerting forces against gravity to maintain grip and move the body along the route, it is generally accepted that a climber`s absolute and relative muscular strength are important for climbing performance. Performance characteristics of forearm flexor muscles (hang-time on ledge, force output, rate of force development, and oxidative capacity) discriminate between climbing performance level, climbing styles, and between climbers and non-climbers. Strength of the hand and wrist flexors, shoulders and upper limbs has gained much attention in the scientific literature, and it has been suggested that both general and specific strength training should be part of a climber`s training program. Furthermore, the ability to generate sub-maximal force in different work-rest ratios has proved useful, in examining finger flexor endurance capacity while trying to mimic real-world climbing demands. Importantly, fingers and shoulders are the most frequent injury locations in climbing. Due to the high mechanical stress and load on the finger flexors, fingerboard and campus board training should be limited in lower-graded climbers. Coaches should address, acknowledge, and screen for amenorrhea and disordered eating in climbers. CONCLUSION: Structured low-volume high-resistance training, twice per week hanging from small ledges or a fingerboard, is a feasible approach for climbers. The current injury prevention training aims to increase the level of performance through building tolerance to performance-relevant load exposure and promoting this approach in the climbing field.
- Klíčová slova
- Bouldering performance, Lead climbing, Local muscular endurance, Maximal strength, Muscle hypertrophy, Muscular power, Prevent injuries,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The purpose of the study was to compare the psychophysiological response of climbers of a range of abilities (lower grade to advanced) when ascending identical climbing routes on a climbing wall and a rotating treadwall. Twenty-two female climbers (31.2 ± 9.4 years; 60.5 ± 6.5 kg; 168.6 ± 5.7 cm) completed two identical 18 m climbing trials (graded 4 on the French Sport scale) separated by 1 week, one on the treadwall (climbing low to the ground) and the other on the indoor wall (climbing in height). Indirect calorimetry, venous blood samples and video-analysis were used to assess energy cost, hormonal response and time-load characteristics. Energy costs were higher during indoor wall climbing comparing to those on the treadwall by 16% (P < 0.001, [Formula: see text] = 0.48). No interaction of climbing ability and climbing condition were found. However, there was an interaction for climbing ability and post-climbing catecholamine concentration (P < 0.01, [Formula: see text] = 0.28). Advanced climbers' catecholamine response increased by 238% and 166% with respect to pre-climb values on the treadwall and indoor wall, respectively; while lower grade climbers pre-climb concentrations were elevated by 281% and 376% on the treadwall and indoor wall, respectively. The video analysis showed no differences in any time-motion variables between treadwall and indoor wall climbing. The study demonstrated a greater metabolic response for indoor wall climbing, however, the exact mechanisms are not yet fully understood.
- MeSH
- dospělí MeSH
- horolezectví fyziologie MeSH
- lidé MeSH
- psychofyziologie normy statistika a číselné údaje MeSH
- síla ruky fyziologie MeSH
- sportovní výkon fyziologie MeSH
- spotřeba kyslíku fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of the study was to assess the effects of climbing ability and slope inclination on vertical loading both in terms the forces involved and physiological responses. Five novice and six intermediate female climbers completed a climbing route at three slope inclinations (85°, 90°, and 98°). The vertical loading during the climb was assessed by force-time integral using a Novel Pedar-X insole and physiological responses via oxygen uptake and heart rate. The novice climbers had a significantly lower (p < 0.05) vertical loading on foot holds and higher oxygen uptake and heart rate compared to intermediate climbers. A significant negative correlation was identified between the force-time integral and oxygen uptake (R = -0.72), and with heart rate (R = -0.64), respectively. The time-force integral decreased across the ascents with increasing slope inclination (p < 0.001). The results indicate that more advanced ability climbers make greater use of foot holds, with associated lowering in physiological response (oxygen uptake and heart rate) across all slope inclinations.
- Klíčová slova
- Pedar X insole, force sensor, indoor climbing, oxygen uptake, vertical force,
- Publikační typ
- časopisecké články MeSH