Nejvíce citovaný článek - PubMed ID 10027051
BACKGROUND: Climbing is an intricate sport composed of various disciplines, holds, styles, distances between holds, and levels of difficulty. In highly skilled climbers the potential for further strength-specific adaptations to increase performance may be marginal in elite climbers. With an eye on the upcoming 2024 Paris Olympics, more climbers are trying to maximize performance and improve training strategies. The relationships between muscular strength and climbing performance, as well as the role of strength in injury prevention, remain to be fully elucidated. This narrative review seeks to discuss the current literature regarding the effect of resistance training in improving maximal strength, muscle hypertrophy, muscular power, and local muscular endurance on climbing performance, and as a strategy to prevent injuries. MAIN BODY: Since sport climbing requires exerting forces against gravity to maintain grip and move the body along the route, it is generally accepted that a climber`s absolute and relative muscular strength are important for climbing performance. Performance characteristics of forearm flexor muscles (hang-time on ledge, force output, rate of force development, and oxidative capacity) discriminate between climbing performance level, climbing styles, and between climbers and non-climbers. Strength of the hand and wrist flexors, shoulders and upper limbs has gained much attention in the scientific literature, and it has been suggested that both general and specific strength training should be part of a climber`s training program. Furthermore, the ability to generate sub-maximal force in different work-rest ratios has proved useful, in examining finger flexor endurance capacity while trying to mimic real-world climbing demands. Importantly, fingers and shoulders are the most frequent injury locations in climbing. Due to the high mechanical stress and load on the finger flexors, fingerboard and campus board training should be limited in lower-graded climbers. Coaches should address, acknowledge, and screen for amenorrhea and disordered eating in climbers. CONCLUSION: Structured low-volume high-resistance training, twice per week hanging from small ledges or a fingerboard, is a feasible approach for climbers. The current injury prevention training aims to increase the level of performance through building tolerance to performance-relevant load exposure and promoting this approach in the climbing field.
- Klíčová slova
- Bouldering performance, Lead climbing, Local muscular endurance, Maximal strength, Muscle hypertrophy, Muscular power, Prevent injuries,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The purpose of the study was to compare the psychophysiological response of climbers of a range of abilities (lower grade to advanced) when ascending identical climbing routes on a climbing wall and a rotating treadwall. Twenty-two female climbers (31.2 ± 9.4 years; 60.5 ± 6.5 kg; 168.6 ± 5.7 cm) completed two identical 18 m climbing trials (graded 4 on the French Sport scale) separated by 1 week, one on the treadwall (climbing low to the ground) and the other on the indoor wall (climbing in height). Indirect calorimetry, venous blood samples and video-analysis were used to assess energy cost, hormonal response and time-load characteristics. Energy costs were higher during indoor wall climbing comparing to those on the treadwall by 16% (P < 0.001, [Formula: see text] = 0.48). No interaction of climbing ability and climbing condition were found. However, there was an interaction for climbing ability and post-climbing catecholamine concentration (P < 0.01, [Formula: see text] = 0.28). Advanced climbers' catecholamine response increased by 238% and 166% with respect to pre-climb values on the treadwall and indoor wall, respectively; while lower grade climbers pre-climb concentrations were elevated by 281% and 376% on the treadwall and indoor wall, respectively. The video analysis showed no differences in any time-motion variables between treadwall and indoor wall climbing. The study demonstrated a greater metabolic response for indoor wall climbing, however, the exact mechanisms are not yet fully understood.
- MeSH
- dospělí MeSH
- horolezectví fyziologie MeSH
- lidé MeSH
- psychofyziologie normy statistika a číselné údaje MeSH
- síla ruky fyziologie MeSH
- sportovní výkon fyziologie MeSH
- spotřeba kyslíku fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Purpose: Sport climbing is a technical, self-paced sport, and the workload is highly variable and mainly localized to the forearm flexors. It has not proved effective to control intensity using measures typical of other sports, such as gas exchange thresholds, heart rate, or blood lactate. Therefore, the purposes of the study were to (1) determine the possibility of applying the mathematical model of critical power to the estimation of a critical angle (CA) as a measure of maximal metabolic steady state in climbing and (2) to compare this intensity with the muscle oxygenation breakpoint (MOB) determined during an exhaustive climbing task. Materials and Methods: Twenty-seven sport climbers undertook three to five exhaustive ascents on a motorized treadwall at differing angles to estimate CA, and one exhaustive climbing test with a progressive increase in angle to determine MOB, assessed using near-infrared spectroscopy (NIRS). Results: Model fit for estimated CA was very high (R 2 = 0.99; SEE = 1.1°). The mean peak angle during incremental test was -17 ± 5°, and CA from exhaustive trials was found at -2.5 ± 3.8°. Nine climbers performing the ascent 2° under CA were able to sustain the task for 20 min with perceived exertion at 12.1 ± 1.9 (RPE). However, climbing 2° above CA led to task failure after 15.9 ± 3.0 min with RPE = 16.4 ± 1.9. When MOB was plotted against estimated CA, good agreement was stated (ICC = 0.80, SEM = 1.5°). Conclusion: Climbers, coaches, and researchers may use a predefined route with three to five different wall angles to estimate CA as an analog of critical power to determine a maximal metabolic steady state in climbing. Moreover, a climbing test with progressive increases in wall angle using MOB also appears to provide a valid estimate of CA.
- Klíčová slova
- critical power, finger flexors, muscle oxygenation, near infrared spectroscopy, oxygen kinetics, sport climbing,
- Publikační typ
- časopisecké články MeSH
AIM: The aim of this study was to examine the relationship between submaximal and maximal physiological responses to rock climbing for climbers of differing abilities. METHODS: Twenty-six male climbers performed a submaximal climbing test on a known circuit at 90° (vertical) and 105° (15° overhanging) inclination and speed 25 movements · min(-1). A maximal test was undertaken on a similar circuit at the same speed with inclination increasing by 10° for each successive 3 min stage. RESULTS: Mean oxygen consumption and heart rate (HR) increased with wall inclination and climbers reached a mean (± SD) peak VO2 of 40.3 ± 3.5 mL · kg(-1) · min(-1) during the maximal test. Self-reported climbing ability was negatively correlated with VO2 and HR during the submaximal test at 90° (VO2, r = -0.82; HR, and r = -0.66) and at 105° (VO2, r = -0.84; HR, and r = -0.78) suggesting an increased exercise economy for climbers with a higher ability level. CONCLUSION: Findings from this study indicate that there is a relationship between wall inclination and the physiological demand of a climb. However, the increased technical ability and fitness of higher level climbers appears to an extent to offset the increased demand through improved exercise economy which in turn leads to an increased time to exhaustion and an improvement in performance.
- MeSH
- dospělí MeSH
- horolezectví fyziologie MeSH
- lidé MeSH
- sportovní výkon * MeSH
- spotřeba kyslíku MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH