Nejvíce citovaný článek - PubMed ID 24602308
Capillary electrophoresis of pterin derivatives responsible for the warning coloration of Heteroptera
Determining the age of free-living insects, particularly of blood-sucking species, is important for human health because such knowledge critically influences the estimates of biting frequency and vectoring ability. Genetic age determination is currently not available. Pteridines gradually accumulate in the eyes of insects and their concentrations is the prevailing method. Despite of their stability, published extractions differ considerably, including for standards, for mixtures of pteridines and even for light conditions. This methodological inconsistency among studies is likely to influence age estimates severely and to hamper their comparability. Therefore we reviewed methodological steps across 106 studies to identify methodological denominators and results across studies. Second, we experimentally test how different pteridines vary in their age calibration curves in, common bed (Cimex lectularius) and bat bugs (C. pipistrelli). Here we show that the accumulation of particular pteridines varied between a) different populations and b) rearing temperatures but not c) with the impact of light conditions during extraction or d) the type of blood consumed by the bugs. To optimize the extraction of pteridines and measuring concentrations, we recommend the simultaneous measurement of more than one standard and subsequently to select those that show consistent changes over time to differentiate among age cohorts.
- MeSH
- chromatografie kapalinová metody MeSH
- hmyz - vektory MeSH
- oči metabolismus MeSH
- pteridiny analýza izolace a purifikace metabolismus MeSH
- stárnutí genetika metabolismus MeSH
- štěnice genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pteridiny MeSH
Animal body coloration is a complex trait resulting from the interplay of multiple mechanisms. While many studies address the functions of animal coloration, the mechanisms of colour production still remain unknown in most taxa. Here we compare reflectance spectra, cellular, ultra- and nano-structure of colour-producing elements, and pigment types in two freshwater turtles with contrasting courtship behaviour, Trachemys scripta and Pseudemys concinna. The two species differ in the distribution of pigment cell-types and in pigment diversity. We found xanthophores, melanocytes, abundant iridophores and dermal collagen fibres in stripes of both species. The yellow chin and forelimb stripes of both P. concinna and T. scripta contain xanthophores and iridophores, but the post-orbital regions of the two species differ in cell-type distribution. The yellow post-orbital region of P. concinna contains both xanthophores and iridophores, while T. scripta has only xanthophores in the yellow-red postorbital/zygomatic regions. Moreover, in both species, the xanthophores colouring the yellow-red skin contain carotenoids, pterins and riboflavin, but T. scripta has a higher diversity of pigments than P. concinna. Trachemys s. elegans is sexually dichromatic. Differences in the distribution of pigment cell types across body regions in the two species may be related to visual signalling but do not match predictions based on courtship position. Our results demonstrate that archelosaurs share some colour production mechanisms with amphibians and lepidosaurs (i.e. vertical layering/stacking of different pigment cell types and interplay of carotenoids and pterins), but also employ novel mechanisms (i.e. nano-organization of dermal collagen) shared with mammals.
- Klíčová slova
- Chelonia, Pseudemys concinna, Trachemys scripta, chromatophores, nanostructure, pigments,
- Publikační typ
- časopisecké články MeSH
The true bugs (Hemiptera: Heteroptera) have evolved a system of well-developed scent glands that produce diverse and frequently strongly odorous compounds that act mainly as chemical protection against predators. A new method of non-lethal sampling with subsequent separation using gas chromatography with mass spectrometric detection was proposed for analysis of these volatile defensive secretions. Separation was performed on Rtx-200 column containing fluorinated polysiloxane stationary phase. Various mechanical irritation methods (ultrasonics, shaking, pressing bugs with plunger of syringe) were tested for secretion sampling with a special focus on non-lethal irritation. The preconcentration step was performed by sorption on solid phase microextraction (SPME) fibers with different polarity. For optimization of sampling procedure, Pyrrhocoris apterus was selected. The entire multi-parameter optimization procedure of secretion sampling was performed using response surface methodology. The irritation of bugs by pressing them with a plunger of syringe was shown to be the most suitable. The developed method was applied to analysis of secretions produced by adult males and females of Pyrrhocoris apterus, Pyrrhocoris tibialis and Scantius aegyptius (all Heteroptera: Pyrrhocoridae). The chemical composition of secretion, particularly that of alcohols, aldehydes and esters, is species-specific in all three pyrrhocorid species studied. The sexual dimorphism in occurrence of particular compounds is largely limited to alcohols and suggests their epigamic intraspecific function. The phenetic overall similarities in composition of secretion do not reflect either relationship of species or similarities in antipredatory color pattern. The similarities of secretions may be linked with antipredatory strategies. The proposed method requires only a few individuals which remain alive after the procedure. Thus secretions of a number of species including even the rare ones can be analyzed and broadly conceived comparative studies can be carried out.
- MeSH
- Heteroptera metabolismus MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- těkavé organické sloučeniny analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- těkavé organické sloučeniny MeSH