Nejvíce citovaný článek - PubMed ID 24631862
Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
- MeSH
- biologické markery metabolismus MeSH
- doxorubicin * terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- makrofágy spojené s nádory metabolismus MeSH
- myši MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * patologie metabolismus farmakoterapie MeSH
- nanomedicína * metody MeSH
- polyethylenglykoly MeSH
- strojové učení MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- doxorubicin * MeSH
- liposomal doxorubicin MeSH Prohlížeč
- nádorové biomarkery MeSH
- polyethylenglykoly MeSH
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
- Klíčová slova
- drug delivery, fluorescence imaging, noninvasive imaging, polymers, theranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH