Nejvíce citovaný článek - PubMed ID 24652777
The synthesis of lanthanide-based organometallic sandwich compounds is very appealing regarding their potential for single-molecule magnetism. Here, it is exploited by on-surface synthesis to design unprecedented lanthanide-directed organometallic sandwich complexes on Au(111). The reported compounds consist of Dy or Er atoms sandwiched between partially deprotonated hexahydroxybenzene molecules, thus introducing a distinct family of homoleptic organometallic sandwiches based on six-membered ring ligands. Their structural, electronic, and magnetic properties are investigated by scanning tunneling microscopy and spectroscopy, X-ray absorption spectroscopy, X-ray linear and circular magnetic dichroism, and X-ray photoelectron spectroscopy, complemented by density functional theory-based calculations. Both lanthanide complexes self-assemble in close-packed islands featuring a hexagonal lattice. It is unveiled that, despite exhibiting analogous self-assembly, the erbium-based species is magnetically isotropic, whereas the dysprosium-based compound features an in-plane magnetization.
- Klíčová slova
- STM/STS, XMCD, density functional theory, lanthanides, on‐surface synthesis, organometallic chemistry,
- Publikační typ
- časopisecké články MeSH
A detailed computational study of hypothetical sandwich dysprosium double-decker complexes, bridged by various numbers of aliphatic linkers, was performed to evaluate the effect of the structural modifications on their ground-state magnetic sublevels and assess their potential as candidates for single-molecule magnets (SMMs). The molecular structures of seven complexes were optimized using the TPSSh functional, and the electronic structure and magnetic properties were investigated using the complete active space self-consistent field method (CASSCF). Estimates of the magnetic moment blocking barrier (Ueff) and blocking temperatures (TB) are reported. In addition, a new method based on computed derivatives of effective demagnetization barriers Ueff with respect to vibrational normal modes was introduced and applied to evaluate the impact of spin-phonon coupling on the SMM properties. On the basis of the computed parameters, we have identified promising candidates with properties superior to those of the existing single-molecule magnets.
- Publikační typ
- časopisecké články MeSH
Single-molecule magnets display magnetic bistability of molecular origin, which may one day be exploited in magnetic data storage devices. Recently it was realised that increasing the magnetic moment of polynuclear molecules does not automatically lead to a substantial increase in magnetic bistability. Attention has thus increasingly focussed on ions with large magnetic anisotropies, especially lanthanides. In spite of large effective energy barriers towards relaxation of the magnetic moment, this has so far not led to a big increase in magnetic bistability. Here we present a comprehensive study of a mononuclear, tetrahedrally coordinated cobalt(II) single-molecule magnet, which has a very high effective energy barrier and displays pronounced magnetic bistability. The combined experimental-theoretical approach enables an in-depth understanding of the origin of these favourable properties, which are shown to arise from a strong ligand field in combination with axial distortion. Our findings allow formulation of clear design principles for improved materials.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH