Most cited article - PubMed ID 24656079
Toward optimal-resolution NMR of intrinsically disordered proteins
Biomolecular force fields optimized for globular proteins fail to properly reproduce properties of intrinsically disordered proteins. In particular, parameters of the water model need to be modified to improve applicability of the force fields to both ordered and disordered proteins. Here, we compared performance of force fields recommended for intrinsically disordered proteins in molecular dynamics simulations of three proteins differing in the content of ordered and disordered regions (two proteins consisting of a well-structured domain and of a disordered region with and without a transient helical motif and one disordered protein containing a region of increased helical propensity). The obtained molecular dynamics trajectories were used to predict measurable parameters, including radii of gyration of the proteins and chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancement, and NMR relaxation data of their individual residues. The predicted quantities were compared with experimental data obtained within this study or published previously. The results showed that the NMR relaxation parameters, rarely used for benchmarking, are particularly sensitive to the choice of force-field parameters, especially those defining the water model. Interestingly, the TIP3P water model, leading to an artificial structural collapse, also resulted in unrealistic relaxation properties. The TIP4P-D water model, combined with three biomolecular force-field parameters for the protein part, significantly improved reliability of the simulations. Additional analysis revealed only one particular force field capable of retaining the transient helical motif observed in NMR experiments. The benchmarking protocol used in our study, being more sensitive to imperfections than the commonly used tests, is well suited to evaluate the performance of newly developed force fields.
Microtubule-associated protein 2c (MAP2c) is a 49-kDa intrinsically disordered protein regulating the dynamics of microtubules in developing neurons. MAP2c differs from its sequence homologue Tau in the pattern and kinetics of phosphorylation by cAMP-dependent protein kinase (PKA). Moreover, the mechanisms through which MAP2c interacts with its binding partners and the conformational changes and dynamics associated with these interactions remain unclear. Here, we used NMR relaxation and paramagnetic relaxation enhancement techniques to determine the dynamics and long-range interactions within MAP2c. The relaxation rates revealed large differences in flexibility of individual regions of MAP2c, with the lowest flexibility observed in the known and proposed binding sites. Quantitative conformational analyses of chemical shifts, small-angle X-ray scattering (SAXS), and paramagnetic relaxation enhancement measurements disclosed that MAP2c regions interacting with important protein partners, including Fyn tyrosine kinase, plectin, and PKA, adopt specific conformations. High populations of polyproline II and α-helices were found in Fyn- and plectin-binding sites of MAP2c, respectively. The region binding the regulatory subunit of PKA consists of two helical motifs bridged by a more extended conformation. Of note, although MAP2c and Tau did not differ substantially in their conformations in regions of high sequence identity, we found that they differ significantly in long-range interactions, dynamics, and local conformation motifs in their N-terminal domains. These results highlight that the N-terminal regions of MAP2c provide important specificity to its regulatory roles and indicate a close relationship between MAP2c's biological functions and conformational behavior.
- Keywords
- NMR relaxation, Tau protein (Tau), microtubule-associated protein (MAP), nuclear magnetic resonance (NMR), paramagnetic relaxation enhancement (PRE), protein conformation, small-angle X-ray scattering (SAXS),
- MeSH
- X-Ray Diffraction MeSH
- Phosphorylation MeSH
- Protein Conformation * MeSH
- Humans MeSH
- Scattering, Small Angle MeSH
- Plectin chemistry metabolism MeSH
- Microtubule-Associated Proteins chemistry metabolism MeSH
- src Homology Domains MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MAP2 protein, human MeSH Browser
- PLEC protein, human MeSH Browser
- Plectin MeSH
- Microtubule-Associated Proteins MeSH
Description of protein dynamics is known to be essential in understanding their function. Studies based on a well established [Formula: see text] NMR relaxation methodology have been applied to a large number of systems. However, the low dispersion of [Formula: see text] chemical shifts very often observed within intrinsically disordered proteins complicates utilization of standard 2D HN correlated spectra because a limited number of amino acids can be characterized. Here we present a suite of triple resonance HNCO-type NMR experiments for measurements of five [Formula: see text] relaxation parameters ([Formula: see text], [Formula: see text], NOE, cross-correlated relaxation rates [Formula: see text] and [Formula: see text]) in doubly [Formula: see text],[Formula: see text]-labeled proteins. We show that the third spectral dimension combined with non-uniform sampling provides relaxation rates for almost all residues of a protein with extremely poor chemical shift dispersion, the C terminal domain of [Formula: see text]-subunit of RNA polymerase from Bacillus subtilis. Comparison with data obtained using a sample labeled by [Formula: see text] only showed that the presence of [Formula: see text] has a negligible effect on [Formula: see text], [Formula: see text], and on the cross-relaxation rate (calculated from NOE and [Formula: see text]), and that these relaxation rates can be used to calculate accurate spectral density values. Partially [Formula: see text]-labeled sample was used to test if the observed increase of [Formula: see text] [Formula: see text] in the presence of [Formula: see text] corresponds to the [Formula: see text] dipole-dipole interactions in the [Formula: see text],[Formula: see text]-labeled sample.
- Keywords
- Intrinsically disordered proteins, Non-uniform sampling, Nuclear magnetic resonance, Relaxation,
- MeSH
- Bacillus subtilis enzymology MeSH
- DNA-Directed RNA Polymerases chemistry MeSH
- Nitrogen Isotopes MeSH
- Carbon Isotopes MeSH
- Nuclear Magnetic Resonance, Biomolecular methods MeSH
- Intrinsically Disordered Proteins chemistry MeSH
- Hydrogen MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbon-13 MeSH Browser
- DNA-Directed RNA Polymerases MeSH
- Nitrogen Isotopes MeSH
- Carbon Isotopes MeSH
- Nitrogen-15 MeSH Browser
- Intrinsically Disordered Proteins MeSH
- Hydrogen MeSH
The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
- Keywords
- ADME, drug delivery systems, biological chemistry, biomaterials, chemical biology, drug design, nanoparticles, natural compounds, proteins and nucleic acids, synthesis, targeting,
- MeSH
- Epigenesis, Genetic MeSH
- Chemistry, Pharmaceutical methods MeSH
- Drug Delivery Systems MeSH
- Proteins chemistry MeSH
- Drug Design MeSH
- Systems Biology MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Congress MeSH
- Names of Substances
- Proteins MeSH