Nejvíce citovaný článek - PubMed ID 24668832
UNLABELLED: The utility of decision tree machine learning in exploring the interactions among the SpO2 target range, neonatal maturity, and oxemic-risk is demonstrated. METHODS: This observational study used 3 years of paired age-SpO2-PaO2 data from a neonatal ICU. The CHAID decision tree method was used to explore the interaction of postmenstrual age (PMA) on the risk of extreme arterial oxygen levels at six different potential SpO2 target ranges (88-92%, 89-93%, 90-94%, 91-95%, 92-96% and 93-97%). Risk was calculated using a severity-weighted average of arterial oxygen outside the normal range for neonates (50-80 mmHg). RESULTS: In total, 7500 paired data points within the potential target range envelope were analyzed. The two lowest target ranges were associated with the highest risk, and the ranges of 91-95% and 92-96% were associated with the lowest risk. There were shifts in the risk associated with PMA. All the target ranges showed the lowest risk at ≥42 weeks PMA. The lowest risk for preterm infants was within a target range of 92-96% with a PMA of ≤34 weeks. CONCLUSIONS: This study demonstrates the utility of decision tree analytics. These results suggest that SpO2 target ranges that are different from typical range might reduce morbidity and mortality. Further research, including prospective randomized trials, is warranted.
- Klíčová slova
- decision tree classification, hyperoxemic-risk, hypoxemic-risk, machine learning, neonatal, oxygen saturation targeting,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Changes in oximeter averaging times have been noted to affect alarm settings. Automated algorithms (A-FiO2) assess FiO2 faster than oximeter averaging, potentially impacting their effectiveness. METHODS: In a single NICU routinely using 15 fabian-PRICO A-FiO2 systems, neonates were randomly exposed to SpO2 averaging time settings switched every 12 h among short (2-4 s), medium (10 s), and long (16 s) oximeter averaging times for the entire duration of their A-FiO2 exposure. Primary endpoints were the percent time in the set SpO2 target range (dependent on PMA), SpO2 < 80%, and SpO2 > 98%, excluding FiO2 = 0.21. RESULTS: Ten VLBW neonates were enrolled over 11 months. At entry, they were 17 days old (IQR: 14-19), with an adjusted gestational age of 29 weeks (IQR: 27-30). The study included data from 272 days of A-FiO2 control (34% short, 32% medium, and 34% long). Respiratory support was predominantly non-invasive (53% NCPAP, 40% HFNC, and 6% NIPPV). The aggregate SpO2 exposure levels were 67% (IQR: 55-82) in the target range, 5.4% (IQR: 2.0-10) with SpO2 < 80%, and 1.2% (IQR: 0.4-3.1) with SpO2 > 98%. There were no differences in the target range time between the SpO2 averaging time settings. There were differences at the SpO2 extremes (p ≤ 0.001). The medium and long averaging were both lower than the short, with the difference larger than predicted. Multivariate analysis revealed that these findings were independent of subject, ventilation mode, target range, and overall stability. CONCLUSIONS: This A-FiO2 algorithm is effective regardless of the SpO2 averaging time setting. There is an advantage to the longer settings, which suggest an interaction with the controller.
- Klíčová slova
- SpO2 targeting, automated oxygen control, neonatal, oxygen control, pulse oximetry,
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Neonatal exposure to episodic hypoxemia and hyperoxemia is highly relevant to outcomes. Our goal was to investigate the differences in the frequency and duration of extreme low and high SpO2 episodes between automated and manual inspired oxygen control. DESIGN: Post-hoc analysis of a cohort from prospective randomized cross-over studies. SETTING: Seven tertiary care neonatal intensive care units. PATIENTS: Fifty-eight very preterm neonates (32 or less weeks PMA) receiving respiratory support and supplemental oxygen participating in an automated versus manual oxygen control cross-over trial. MAIN MEASURES: Extreme hypoxemia was defined as a SpO2 < 80%, extreme hyperoxemia as a SpO2 > 98%. Episode duration was categorized as < 5 seconds, between 5 to < 30 seconds, 30 to < 60 seconds, 60 to < 120 seconds, and 120 seconds or longer. RESULTS: The infants were of a median postmenstrual age of 29 (28-31) weeks, receiving a median FiO2 of 0.28 (0.25-0.32) with mostly receiving non-invasive respiratory support (83%). While most of the episodes were less than 30 seconds, longer episodes had a marked effect on total time exposure to extremes. The time differences in each of the three longest durations episodes (30, 60, and 120 seconds) were significantly less during automated than during manual control (p < 0.001). Nearly two-third of the reduction of total time spent at the extremes between automated and manual control (3.8 to 2.1% for < 80% SpO2 and 3.0 to 1.6% for > 98% SpO2) was seen in the episodes of at least 60 seconds. CONCLUSIONS: This study shows that the majority of episodes preterm infants spent in SpO2 extremes are of short duration regardless of manual or automated control. However, the infrequent longer episodes not only contribute the most to the total exposure, but also their reduction in frequency to the improvement associated with automated control.
- Klíčová slova
- Hyperoxemia episodes, Hypoxemic episodes, Neonatology, Oxygen saturation,
- MeSH
- hypoxie etiologie terapie MeSH
- kojenec MeSH
- kyslík * MeSH
- lidé MeSH
- novorozenec nedonošený * MeSH
- novorozenec MeSH
- oxymetrie MeSH
- prospektivní studie MeSH
- retrospektivní studie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyslík * MeSH