Nejvíce citovaný článek - PubMed ID 24704903
Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review
The benefits of plant-microbe interactions have been exploited extensively for nutrient removal. Radial oxygen loss in aquatic macrophytes potentially promotes nitrification and accelerates nitrogen removal through coupled nitrification-denitrification process. Nitrification is likely the limiting activity for an effective nitrogen removal in wetlands. In this work, we have quantified the effect of radial oxygen losses in Typha angustifolia plants in environments of contrasting salinities, including a temporary lagoon, a constructed wetland, and a river estuary. In all sites, radial oxygen diffusion occurred mainly at a narrow band, from 1 to 5 cm from the root tip, and were almost absent at the tip and basal sections of the root (> 5 cm). Root sections with active oxygen diffusion tended to show higher bacterial and archaeal densities in the rhizoplane according to 16S rRNA gene abundance data, except at higher salinities. Archaeal amoA /bacterial amoA gene ratios were highly variable among sites. Archaeal nitrifiers were only favoured over bacteria on the root surface of Typha collected from the constructed wetland. Collectively, radial oxygen loss had little effect on the nitrifying microbial community at the smaller scale (differences according to root-section), and observed differences were more likely related to prevailing physicochemical conditions of the studied environments or to long-term effects of the root microenvironment (root vs sediment comparisons).
- MeSH
- amoniak metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyslík metabolismus MeSH
- mikrobiota MeSH
- nitrifikace fyziologie MeSH
- orobincovité metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amoniak MeSH
- kyslík MeSH
- RNA ribozomální 16S MeSH
One of the possible ways to improve the operation efficiency of constructed wetlands and to prevent their clogging is the application of earthworms. They have already been successfully applied for vermicomposting and for sludge dewatering and treatment. A few studies have already examined the effect of earthworms on the treatment of wastewater by vertical flow constructed wetlands (VFCWs), but none of them have provided a yearlong research result from an open-air system or compared the effect that different seasons in a temperate climate area can have on these invertebrates. The goal of this research was to estimate the effect that earthworms and plants have on VFCW's operation. Four mesocosms (a filter, a filter with earthworms, a VFCW and a VFCW with earthworms) were built and their influent and effluent water quality was monitored for a period of 1 year. They were fed with wastewater coming from a building of the University of Bologna (Italy). The results have shown that the presence of earthworms in this specific system did not reduce the organic matter content of the substrate, but it has positively influenced plants' growth. However, since neither earthworms nor plants had a statistically significant effect on the effluent quality, it can be concluded that the integration of these invertebrates cannot improve wastewater treatment of vertical flow filters or constructed wetlands.
- Klíčová slova
- Constructed wetlands, Earthworms, Filters, Plants, Seasonal effect, Wastewater treatment,
- MeSH
- kvalita vody MeSH
- mokřady MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda chemie MeSH
- odpadní vody MeSH
- Oligochaeta fyziologie MeSH
- univerzity MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- odpadní voda MeSH
- odpadní vody MeSH