Most cited article - PubMed ID 17391330
Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments. Here, we review the literature and identify knowledge gaps on the metabolic diversity, ecological distribution, and physiological adaptations of nitrifying microorganisms in acidic and alkaline environments. We emphasise that nitrifying microorganisms depend on a suite of physiological adaptations to maintain pH homeostasis, acquire energy and carbon sources, detoxify reactive nitrogen species, and generate a membrane potential at pH extremes. We also recognize the broader implications of their activities primarily in acidic environments, with a focus on agricultural productivity and nitrous oxide emissions, as well as promising applications in treating municipal wastewater.
- Keywords
- archaea, metabolism, nitrification,
- MeSH
- Ammonia * metabolism MeSH
- Bacteria metabolism MeSH
- Ecosystem MeSH
- Nitrification * MeSH
- Oxidation-Reduction MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Ammonia * MeSH
The benefits of plant-microbe interactions have been exploited extensively for nutrient removal. Radial oxygen loss in aquatic macrophytes potentially promotes nitrification and accelerates nitrogen removal through coupled nitrification-denitrification process. Nitrification is likely the limiting activity for an effective nitrogen removal in wetlands. In this work, we have quantified the effect of radial oxygen losses in Typha angustifolia plants in environments of contrasting salinities, including a temporary lagoon, a constructed wetland, and a river estuary. In all sites, radial oxygen diffusion occurred mainly at a narrow band, from 1 to 5 cm from the root tip, and were almost absent at the tip and basal sections of the root (> 5 cm). Root sections with active oxygen diffusion tended to show higher bacterial and archaeal densities in the rhizoplane according to 16S rRNA gene abundance data, except at higher salinities. Archaeal amoA /bacterial amoA gene ratios were highly variable among sites. Archaeal nitrifiers were only favoured over bacteria on the root surface of Typha collected from the constructed wetland. Collectively, radial oxygen loss had little effect on the nitrifying microbial community at the smaller scale (differences according to root-section), and observed differences were more likely related to prevailing physicochemical conditions of the studied environments or to long-term effects of the root microenvironment (root vs sediment comparisons).
- MeSH
- Ammonia metabolism MeSH
- Plant Roots metabolism MeSH
- Oxygen metabolism MeSH
- Microbiota MeSH
- Nitrification physiology MeSH
- Typhaceae metabolism MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ammonia MeSH
- Oxygen MeSH
- RNA, Ribosomal, 16S MeSH
Archaea and bacteria are important drivers for nutrient transformations in soils and catalyse the production and consumption of important greenhouse gases. In this study, we investigate changes in archaeal and bacterial communities of four Czech grassland soils affected by outdoor cattle husbandry. Two show short-term (3 years; STI) and long-term impact (17 years; LTI), one is regenerating from cattle impact (REG) and a control is unaffected by cattle (CON). Cattle manure (CMN), the source of allochthonous microbes, was collected from the same area. We used pyrosequencing of 16S rRNA genes to assess the composition of archaeal and bacterial communities in each soil type and CMN. Both short- and long- term cattle impact negatively altered archaeal and bacterial diversity, leading to increase of homogenization of microbial communities in overwintering soils over time. Moreover, strong shifts in the prokaryotic communities were observed in response to cattle overwintering, with the greatest impact on archaea. Oligotrophic and acidophilic microorganisms (e.g. Thaumarchaeota, Acidobacteria, and α-Proteobacteria) dominated in CON and expressed strong negative response to increased pH, total C and N. Whereas copiotrophic and alkalophilic microbes (e.g. methanogenic Euryarchaeota, Firmicutes, Chloroflexi, Actinobacteria, and Bacteroidetes) were common in LTI showing opposite trends. Crenarchaeota were also found in LTI, though their trophic interactions remain cryptic. Firmicutes, Bacteroidetes, Methanobacteriaceae, and Methanomicrobiaceae indicated the introduction and establishment of faecal microbes into the impacted soils, while Chloroflexi and Methanosarcinaceae suggested increased abundance of soil-borne microbes under altered environmental conditions. The observed changes in prokaryotic community composition may have driven corresponding changes in soil functioning.
- MeSH
- Archaea * classification genetics MeSH
- Bacteria * classification genetics MeSH
- Biodiversity MeSH
- Manure microbiology MeSH
- Microbial Consortia MeSH
- Soil Microbiology * MeSH
- RNA, Ribosomal, 16S MeSH
- Cattle * MeSH
- Agriculture MeSH
- Environment MeSH
- Animals MeSH
- Check Tag
- Cattle * MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Manure MeSH
- RNA, Ribosomal, 16S MeSH