Nejvíce citovaný článek - PubMed ID 24886941
Diethyl 2-(phenylcarbamoyl)phenyl phosphorothioates: synthesis, antimycobacterial activity and cholinesterase inhibition
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer's disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman's spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5-228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine-an established cholinesterases inhibitor used in the treatment of Alzheimer's disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
- Klíčová slova
- acetylcholinesterase, benzamides, butyrylcholinesterase, enzyme inhibition, esters, in vitro inhibition, phosphorus derivatives, salicylanilides,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- benzamidy chemie farmakologie MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Electrophorus MeSH
- estery chemie farmakologie MeSH
- fosfor chemie MeSH
- inhibiční koncentrace 50 MeSH
- koně MeSH
- molekulární struktura MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- benzamidy MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- estery MeSH
- fosfor MeSH
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
- Klíčová slova
- acetylcholinesterase, butyrylcholinesterase, carbamate, enzyme inhibition, salicylanilide, thiocarbamate,
- MeSH
- acetylcholinesterasa chemie MeSH
- buňky Hep G2 MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemie toxicita MeSH
- inhibiční koncentrace 50 MeSH
- katalytická doména MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- thiokarbamáty chemie toxicita MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- thiokarbamáty MeSH