Most cited article - PubMed ID 24908089
Effect of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, on behavioral and physiological parameters
Starting from simple clinical statistics, the spectrum of methods used in epilepsy research in the Institute of Physiology of the Czechoslovak (now Czech) Academy of Sciences progressively increased. Professor Servít used electrophysiological methods for study of brain activity in lower vertebrates, neuropathology was focused on electronmicroscopic study of cortical epileptic focus and ion-sensitive microelectrodes were used for studies of cortical direct current potentials. Developmental studies used electrophysiological methods (activity and projection of cortical epileptic foci, EEG under the influence of convulsant drugs, hippocampal, thalamic and cortical electrical stimulation for induction of epileptic afterdischarges and postictal period). Extensive pharmacological studies used seizures elicited by convulsant drugs (at first pentylenetetrazol but also other GABA antagonists as well as agonists of glutamate receptors). Motor performance and behavior were also studied during brain maturation. The last but not least molecular biology was included into the spectrum of methods. Many original data were published making a background of position of our laboratory in the first line of laboratories interested in brain development.
- MeSH
- Academies and Institutes MeSH
- Biomedical Research trends MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Epilepsy * physiopathology MeSH
- Humans MeSH
- Brain drug effects physiology growth & development MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
The GluN2B subunit of NMDA receptors represents a perspective therapeutic target in various CNS pathologies, including epilepsy. Because of its predominant expression in the immature brain, selective GluN2B antagonists are expected to be more effective early in postnatal development. The aim of this study was to identify age-dependent differences in the anticonvulsant activity of the GluN2B-selective antagonist Ro 25-6981 and assess the safety of this drug for the developing brain. Anticonvulsant activity of Ro 25-6981 (1, 3, and 10 mg/kg) was tested in a pentylenetetrazol (PTZ) model in infantile (12-day-old, P12) and juvenile (25-day-old, P25) rats. Ro 25-6981 (1 or 3 mg/kg/day) was administered from P7 till P11 to assess safety for the developing brain. Animals were then tested repeatedly in a battery of behavioral tests focusing on sensorimotor development, cognition, and emotionality till adulthood. Effects of early exposure to Ro 25-6981 on later seizure susceptibility were tested in the PTZ model. Ro 25-6981 was effective against PTZ-induced seizures in infantile rats, specifically suppressing the tonic phase of the generalized tonic-clonic seizures, but it failed in juveniles. Neither sensorimotor development nor cognitive abilities and emotionality were affected by early-life exposure to Ro 25-6981. Treatment cessation did not affect later seizure susceptibility. Our data are in line with the maturational gradient of the GluN2B-subunit of NMDA receptors and demonstrate developmental differences in the anti-seizure activity of the GluN2B-selective antagonist and its safety for the developing brain.
- Keywords
- GluN2B-selective antagonist, Ro 25-6981, anti-seizure effects, development, immature rats, memory, motor performance,
- Publication type
- Journal Article MeSH