Dna2 is an essential nuclease-helicase that acts in several distinct DNA metabolic pathways including DNA replication and recombination. To balance these functions and prevent unscheduled DNA degradation, Dna2 activities must be regulated. Here we show that Saccharomyces cerevisiae Dna2 function is controlled by sumoylation. We map the sumoylation sites to the N-terminal regulatory domain of Dna2 and show that in vitro sumoylation of recombinant Dna2 impairs its nuclease but not helicase activity. In cells, the total levels of the non-sumoylatable Dna2 variant are elevated. However, non-sumoylatable Dna2 shows impaired nuclear localization and reduced recruitment to foci upon DNA damage. Non-sumoylatable Dna2 reduces the rate of DNA end resection, as well as impedes cell growth and cell cycle progression through S phase. Taken together, these findings show that in addition to Dna2 phosphorylation described previously, Dna2 sumoylation is required for the homeostasis of the Dna2 protein function to promote genome stability.
- Klíčová slova
- DNA, Genomic instability,
- MeSH
- DNA fungální genetika metabolismus MeSH
- DNA-helikasy chemie genetika metabolismus MeSH
- fosforylace MeSH
- kinetika MeSH
- metabolické sítě a dráhy MeSH
- poškození DNA MeSH
- proteinové domény MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- replikace DNA MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae enzymologie genetika růst a vývoj MeSH
- stabilita enzymů MeSH
- sumoylace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- DNA2 protein, S cerevisiae MeSH Prohlížeč
- rekombinantní fúzní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- Siz2 protein, S cerevisiae MeSH Prohlížeč
Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.
- Klíčová slova
- Homologous recombination, Rad51, Rad52, Rad59, SUMOylation, Srs2,
- MeSH
- chromozomy hub genetika MeSH
- DNA opravný a rekombinační protein Rad52 chemie metabolismus MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- homologní rekombinace * MeSH
- lysin metabolismus MeSH
- mitóza genetika MeSH
- poškození DNA MeSH
- proteinové domény MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae cytologie genetika metabolismus MeSH
- sumoylace * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA opravný a rekombinační protein Rad52 MeSH
- DNA vazebné proteiny MeSH
- lysin MeSH
- RAD52 protein, S cerevisiae MeSH Prohlížeč
- RAD59 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
Srs2 plays many roles in DNA repair, the proper regulation and coordination of which is essential. Post-translational modification by small ubiquitin-like modifier (SUMO) is one such possible mechanism. Here, we investigate the role of SUMO in Srs2 regulation and show that the SUMO-interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself specifically stimulates recombination at the rDNA locus.
- Klíčová slova
- DNA repair, homologous recombination, proliferating cell nuclear antigen (PCNA), protein-protein interaction, small ubiquitin-like modifier (SUMO),
- MeSH
- aminokyselinové motivy MeSH
- DNA fungální genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- oprava DNA fyziologie MeSH
- proliferační antigen buněčného jádra genetika metabolismus MeSH
- protein SUMO-1 genetika metabolismus MeSH
- rekombinace genetická fyziologie MeSH
- ribozomální DNA genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- sumoylace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- DNA-helikasy MeSH
- proliferační antigen buněčného jádra MeSH
- protein SUMO-1 MeSH
- ribozomální DNA MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SRS2 protein, S cerevisiae MeSH Prohlížeč