Nejvíce citovaný článek - PubMed ID 25170099
Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity
Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.
- Klíčová slova
- antioxidants, biostimulants, plant growth promoting rhizobacteria, plant probiotics, water use efficiency,
- Publikační typ
- časopisecké články MeSH
Pollination in flowering plants is initiated by germination of pollen grains on stigmas followed by fast growth of pollen tubes representing highly energy-consuming processes. The symplastic isolation of pollen grains and tubes requires import of Suc available in the apoplast. We show that the functional coupling of Suc cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco (Nicotiana tabacum). Transcript profiling, in situ hybridization, and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro and in vivo support the functional coupling in supplying carbohydrates for pollen germination and tube growth evidenced by spatiotemporally coordinated expression. Detection of vacuolar invertases in maternal tissues by these approaches revealed metabolic cross talk between male and female tissues and supported the requirement for carbohydrate supply in transmitting tissue during pollination. Tissue-specific expression of an invertase inhibitor and addition of the chemical invertase inhibitor miglitol strongly reduced extracellular invertase activity and impaired pollen germination. Measurements of (competitive) uptake of labeled sugars identified two import pathways for exogenously available Suc into the germinating pollen operating in parallel: direct Suc uptake and via the hexoses after cleavage by extracellular invertase. Reduction of extracellular invertase activity in pollen decreases Suc uptake and severely compromises pollen germination. We further demonstrate that Glc as sole carbon source is sufficient for pollen germination, whereas Suc is supporting tube growth, revealing an important regulatory role of both the invertase substrate and products contributing to a potential metabolic and signaling-based multilayer regulation of pollination by carbohydrates.
- MeSH
- 1-deoxynojirimycin analogy a deriváty farmakologie MeSH
- biologické modely MeSH
- hexosy metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- invertasa antagonisté a inhibitory metabolismus MeSH
- klíčení účinky léků MeSH
- opylení účinky léků MeSH
- proteiny přenášející monosacharidy genetika metabolismus MeSH
- pylová láčka účinky léků enzymologie růst a vývoj MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- reprodukovatelnost výsledků MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sacharidy farmakologie MeSH
- tabák enzymologie genetika metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-deoxynojirimycin MeSH
- hexosy MeSH
- inhibitory enzymů MeSH
- invertasa MeSH
- miglitol MeSH Prohlížeč
- proteiny přenášející monosacharidy MeSH
- rostlinné proteiny MeSH
- sacharidy MeSH
Cytokinins (CKs) are well-established as important phytohormonal regulators of plant growth and development. An increasing number of studies have also revealed the function of these hormones in plant responses to biotic and abiotic stresses. While the function of certain CK classes, including trans-zeatin and isopentenyladenine-type CKs, have been studied in detail, the role of cis-zeatin-type CKs (cZs) in plant development and in mediating environmental interactions is less well defined. Here we provide a comprehensive summary of the current knowledge about abundance, metabolism and activities of cZs in plants. We outline the history of their analysis and the metabolic routes comprising cZ biosynthesis and degradation. Further we provide an overview of changes in the pools of cZs during plant development and environmental interactions. We summarize studies that investigate the role of cZs in regulating plant development and defence responses to pathogen and herbivore attack and highlight their potential role as 'novel' stress-response markers. Since the functional roles of cZs remain largely based on correlative data and genetic manipulations of their biosynthesis, inactivation and degradation are few, we suggest experimental approaches using transgenic plants altered in cZ levels to further uncover their roles in plant growth and environmental interactions and their potential for crop improvement.
- Klíčová slova
- Abiotic stress, c-io6A37-tRNA, cis-zeatin, herbivory, pathogen, plant growth, prenylated tRNA.,
- MeSH
- býložravci MeSH
- fyziologie rostlin * MeSH
- potravní řetězec * MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- vývoj rostlin MeSH
- zeatin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- zeatin MeSH
Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
- Klíčová slova
- Cell wall invertase, cytokinins, drought stress, ethylene, source–sink relationships, tomato.,
- MeSH
- buněčná stěna enzymologie MeSH
- Chenopodium genetika metabolismus MeSH
- ektopická exprese * MeSH
- fotosyntéza MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- invertasa genetika metabolismus MeSH
- listy rostlin metabolismus MeSH
- období sucha * MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Solanum lycopersicum enzymologie genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- invertasa MeSH
- rostlinné proteiny MeSH