Nejvíce citovaný článek - PubMed ID 25344686
Taming the wild: resolving the gene pools of non-model Arabidopsis lineages
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
- Klíčová slova
- Allopolyploidy, Betula, autopolyploidy, gene flow, genomic polarization, homoeologs, interploidal, introgressive hybridization, polyploid phylogenetics, polyploidization simulation, reticulate evolution,
- MeSH
- alely * MeSH
- bříza * genetika klasifikace MeSH
- fylogeneze * MeSH
- genom rostlinný * MeSH
- genová introgrese MeSH
- hybridizace genetická MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection.
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
- MeSH
- Arabidopsis genetika fyziologie MeSH
- Brassica genetika fyziologie MeSH
- Brassicaceae genetika fyziologie MeSH
- fylogeneze MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- sekvenční analýza DNA MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH