Most cited article - PubMed ID 25369468
Biomarkers for monitoring pre-analytical quality variation of mRNA in blood samples
The emerging use of qPCR and dPCR in regulated bioanalysis and absence of regulatory guidance on assay validations for these platforms has resulted in discussions on lack of harmonization on assay design and appropriate acceptance criteria for these assays. Both qPCR and dPCR are extensively used to answer bioanalytical questions for novel modalities such as cell and gene therapies. Following cross-industry conversations on the lack of information and guidelines for these assays, an American Association of Pharmaceutical Scientists working group was formed to address these gaps by bringing together 37 industry experts from 24 organizations to discuss best practices to gain a better understanding in the industry and facilitate filings to health authorities. Herein, this team provides considerations on assay design, development, and validation testing for PCR assays that are used in cell and gene therapies including (1) biodistribution; (2) transgene expression; (3) viral shedding; (4) and persistence or cellular kinetics of cell therapies.
- Keywords
- AAV, RT-qPCR, biodistribution, cell therapy, cellular kinetics, dPCR, gene therapy, qPCR, shedding, transgene expression,
- MeSH
- Genetic Therapy * MeSH
- Polymerase Chain Reaction MeSH
- Tissue Distribution MeSH
- Drug Development * MeSH
- Publication type
- Journal Article MeSH
The precision and reliability of quantitative nucleic acid analysis depends on the quality of the sample analyzed and the integrity of the nucleic acids. The integrity of RNA is currently primarily assessed by the analysis of ribosomal RNA, which is the by far dominant species. The extrapolation of these results to mRNAs and microRNAs, which are structurally quite different, is questionable. Here we show that ribosomal and some nucleolar and mitochondrial RNAs, are highly resistant to naturally occurring post-mortem degradation, while mRNAs, although showing substantial internal variability, are generally much more prone to nucleolytic degradation. In contrast, all types of RNA show the same sensitivity to heat. Using qPCR assays targeting different regions of mRNA molecules, we find no support for 5' or 3' preferentiality upon post-mortem degradation.
- Keywords
- Degradation, RNA integrity, RNA quality, RQI, RT-qPCR,
- Publication type
- Journal Article MeSH