Nejvíce citovaný článek - PubMed ID 25602957
Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: relation to psychopathology
Schizophrenia, a profoundly impactful neuropsychiatric disorder, has been the subject of extensive research using animal models. However, certain important aspects remain understudied, including assumed long-term consequences of psychotic episodes on negative symptoms development and progression. Addressing these limitations, we proposed a novel animal model in male rats based on early postnatal immune activation triggered by lipopolysaccharide (LPS), serving as the predisposing factor (1st hit). As the 2nd hit, representing psychotic-like episodes, we implemented a multi-episodic co-treatment with dizocilpine (MK-801) and amphetamine (AMP), spanning multiple developmental periods. The animals were tested in two social behavioral assays in adolescence and adulthood to investigate whether a social deficit would arise. In addition, we evaluated the level of oxytocin (OT), a neuropeptide relevant to social behavior, in selected brain regions. In the social interaction test, when animals could freely interact in the open field and express their social behavioral profile entirely, social behavior decreased in adolescent experimental animals. In the social approach test in the Y maze, all animals, irrespective of treatment, preferred conspecific over an indifferent object and novel rat over a familiar rat. Further, the results revealed that the OT content in the hypothalamus increased with age. In the proposed model, social interaction in the open field was decreased in adolescent but not in adult rats, indicating that the pharmacological manipulations caused only transient age-dependent changes. The study was thus in certain aspects successful in creating a novel approach to model social deficit potentially relevant to schizophrenia; other findings require further investigation.
- Klíčová slova
- Animal model, Oxytocin, Schizophrenia, Social behavior, Two-hit model, negative symptom,
- Publikační typ
- časopisecké články MeSH
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
- Klíčová slova
- fetal organs, fetal programming, placenta–brain axis, pregnancy, rat model, tryptophan metabolism,
- MeSH
- krysa rodu Rattus MeSH
- metabolické sítě a dráhy MeSH
- placenta embryologie metabolismus MeSH
- plod embryologie metabolismus MeSH
- potkani Wistar MeSH
- těhotenství MeSH
- transkriptom * MeSH
- tryptofan genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tryptofan MeSH
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
- Klíčová slova
- animal models, laboratory rodents, model validity, neurobiology, schizophrenia, schizophrenia symptoms, zebrafish,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH