Nejvíce citovaný článek - PubMed ID 25627923
Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility
β-N-Acetylhexosaminidase from Talaromyces flavus (TfHex; EC 3.2.1.52) is an exo-glycosidase with dual activity for cleaving N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) units from carbohydrates. By targeting a mutation hotspot of the active site residue Glu332, we prepared a library of ten mutant variants with their substrate specificity significantly shifted towards GlcNAcase activity. Suitable mutations were identified by in silico methods. We optimized a microtiter plate screening method in the yeast Pichia pastoris expression system, which is required for the correct folding of tetrameric fungal β-N-acetylhexosaminidases. While the wild-type TfHex is promiscuous with its GalNAcase/GlcNAcase activity ratio of 1.2, the best single mutant variant Glu332His featured an 8-fold increase in selectivity toward GlcNAc compared with the wild-type. Several prepared variants, in particular Glu332Thr TfHex, had significantly stronger transglycosylation capabilities than the wild-type, affording longer chitooligomers - they behaved like transglycosidases. This study demonstrates the potential of mutagenesis to alter the substrate specificity of glycosidases.
- Klíčová slova
- Pichia pastoris, Talaromyces flavus, site-directed mutagenesis, site-saturation mutagenesis, substrate specificity, β-N-acetylhexosaminidase,
- MeSH
- acetylgalaktosamin metabolismus MeSH
- acetylglukosamin * metabolismus MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * metabolismus MeSH
- kinetika MeSH
- mutace MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylgalaktosamin MeSH
- acetylglukosamin * MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * MeSH
Fungal β-N-acetylhexosaminidases, though hydrolytic enzymes in vivo, are useful tools in the preparation of oligosaccharides of biological interest. The β-N-acetylhexosaminidase from Talaromyces flavus is remarkable in terms of its synthetic potential, broad substrate specificity, and tolerance to substrate modifications. It can be heterologously produced in Pichia pastoris in a high yield. The mutation of the Tyr470 residue to histidine greatly enhances its transglycosylation capability. The aim of this work was to identify the structural requirements of this model β-N-acetylhexosaminidase for its transglycosylation acceptors and formulate a structure-activity relationship study. Enzymatic reactions were performed using an activated glycosyl donor, 4-nitrophenyl N-acetyl-β-d-glucosaminide or 4-nitrophenyl N-acetyl-β-d-galactosaminide, and a panel of glycosyl acceptors of varying structural features (N-acetylglucosamine, glucose, N-acetylgalactosamine, galactose, N-acetylmuramic acid, and glucuronic acid). The transglycosylation products were isolated and structurally characterized. The C-2 N-acetamido group in the acceptor molecule was found to be essential for recognition by the enzyme. The presence of the C-2 hydroxyl moiety strongly hindered the normal course of transglycosylation, yielding unique non-reducing disaccharides in a low yield. Moreover, whereas the gluco-configuration at C-4 steered the glycosylation into the β(1-4) position, the galacto-acceptor afforded a β(1-6) glycosidic linkage. The Y470H mutant enzyme was tested with acceptors based on β-glycosides of uronic acid and N-acetylmuramic acid. With the latter acceptor, we were able to isolate and characterize one glycosylation product in a low yield. To our knowledge, this is the first example of enzymatic glycosylation of an N-acetylmuramic acid derivative. In order to explain these findings and predict enzyme behavior, a modeling study was accomplished that correlated with the acquired experimental data.
- Klíčová slova
- Glide docking, Talaromyces flavus, muramic acid, non-reducing carbohydrate, substrate specificity, transglycosylation, β-N-acetylhexosaminidases,
- MeSH
- beta-N-acetylhexosaminidasy chemie metabolismus MeSH
- glykosidy metabolismus MeSH
- glykosylace MeSH
- kinetika MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- oligosacharidy metabolismus MeSH
- substrátová specifita MeSH
- Talaromyces enzymologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
- glykosidy MeSH
- oligosacharidy MeSH
N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by β-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. β-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of β-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the β-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcβ4GlcNAc disaccharide, a selective ligand of galectin-3.
- Klíčová slova
- galectin-3, molecular modeling, site-directed mutagenesis, solvent, substrate specificity, transglycosidase, β-N-acetylhexosaminidase,
- MeSH
- aktivace enzymů MeSH
- beta-N-acetylhexosaminidasy chemie genetika metabolismus MeSH
- hydrolýza MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- mutace MeSH
- polysacharidy biosyntéza chemie farmakologie MeSH
- proteinové inženýrství MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH
- polysacharidy MeSH