Nejvíce citovaný článek - PubMed ID 25704181
A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface
To understand the possible lubricant mechanism in ceramic-on-ceramic hip joint prostheses, biochemical reactions of the synovial fluid and the corresponding frictional coefficients were studied. The experiments were performed in a hip joint simulator using the ball-on-cup configuration with balls and cups made from two types of ceramics, BIOLOX®forte and BIOLOX®delta. Different lubricants, namely albumin, γ-globulin, hyaluronic acid and three model synovial fluids, were studied in the experiments and Raman spectroscopy was used to analyze the biochemical responses of these lubricants at the interface. BIOLOX®delta surface was found less reactive to proteins and model fluid lubricants. In contrast, BIOLOX®forte ball surface has shown chemisorption with both proteins, hyaluronic acid and model fluids imitating total joint replacement and osteoarthritic joint. There was no direct correlation between the measured frictional coefficient and the observed chemical reactions. In summary, the study reveals chemistry of lubricant film formation on ceramic hip implant surfaces with various model synovial fluids and their components.
- Klíčová slova
- Raman spectroscopy, bio-tribology, film formation, synovial fluid, tribo-chemistry,
- Publikační typ
- časopisecké články MeSH
The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.
- Klíčová slova
- biological fluids, biotribology, friction, lubrication, wear,
- Publikační typ
- časopisecké články MeSH
Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a 'medium walking gait' of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.
- Klíčová slova
- DLC, OA synovial fluid, dimple, friction, wear,
- Publikační typ
- časopisecké články MeSH