Nejvíce citovaný článek - PubMed ID 25862914
MicroRNA profile in site-specific head and neck squamous cell cancer
Carcinomas of the thyroid gland are some of the most common malignancies of the endocrine system. The causes of tumor transformation are genetic changes in genes encoding cell signaling pathways that lead to an imbalance between cell proliferation and apoptosis. Some mutations have been associated with increased tumor aggressiveness, metastatic lymph node spread, tendency to dedifferentiate, and/or reduced efficiency of radioiodine therapy. The main known genetic causes of thyroid cancer include point mutations in the BRAF, RAS, TERT, RET, and TP53 genes and the fusion genes RET/PTC, PAX8/PPAR-γ, and NTRK. Molecular genetic testing of the fine needle aspiration cytology of the thyroid tissue in the preoperative period or of the removed thyroid tissue in the postoperative period is becoming more and more common in selected institutions. Positive detection of genetic changes, thus, becomes a diagnostic and prognostic factor and a factor that determines the extent of the surgical and nonsurgical treatment. The findings of genetic research on thyroid cancer are now beginning to be applied to clinical practice. In preoperative molecular diagnostics, the aggressiveness of cancers with the most frequently occurring mutations is correlated with the extent of the planned surgical treatment (radicality of surgery, neck dissection, etc.). However, clear algorithms are not established for the majority of genetic alterations. This review aims to provide a basic overview of the findings of the most commonly occurring gene mutations in thyroid cancer and to discuss the current recommendations on the extent of surgical and biological treatment concerning preoperatively detected genetic changes.
- Klíčová slova
- FNAC, extent of surgery, fusion genes, molecular genetics, mutations, neck dissection, prognosis, surgical treatment, thyroid carcinoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: MicroRNAs (miRNAs) are non-coding regulatory molecules 18-25 nucleotides in length that act as post-transcriptional regulators of gene expression. MiRNAs affect various biological processes including carcinogenesis. Deregulation of miRNAa expression has been described in a variety of tumors including papillary thyroid carcinoma (PTC). The aim of the present study was to investigate the role of selected miRNAs in PTC and find associations between miRNA expression and the BRAF (V600E) mutation. MATERIALS AND METHODS: The study group comprised a total of 62 patients with surgically treated PTC. The control group consisted of 30 patients with nodular goitre that were surgically treated in the same time period. The expression status of miR-146b, miR-181a, miR-187, miR-221 and miR-222 was determined using quantitative real-time PCR. BRAF mutation analysis was performed by PCR with reverse hybridization. RESULTS: MiR-146b, miR-181a, miR-187, miR-221 and miR-222 were up-regulated in PTC compared to normal thyroid gland tissue of the same patient. MiR-146b, miR-187, miR-221 and miR-222 were also up-regulated in PTC compared to nodular goitre. The recurrent tumors were statistically significantly associated with up-regulation of miR-221. The mutation V600E of BRAF gene was significantly associated with up-regulation of miR-146b and with down-regulation of miR-187. CONCLUSION: Over-expression of selected miRNAs in PTC compared to normal thyroid gland tissue and nodular goitre was found. Moreover, miR-221 may serve as a prognostic marker as its over-expression was significantly associated with recurrent tumors.
- Klíčová slova
- BRAF mutation, MicroRNA, papillary thyroid cancer,
- MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- mikro RNA * genetika MeSH
- mutace MeSH
- nádory štítné žlázy * genetika MeSH
- papilární karcinom štítné žlázy genetika MeSH
- papilární karcinom * genetika MeSH
- prognóza MeSH
- protoonkogenní proteiny B-Raf genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- BRAF protein, human MeSH Prohlížeč
- mikro RNA * MeSH
- protoonkogenní proteiny B-Raf MeSH
MiR-34a belongs to the class of small non-coding regulatory RNAs and functions as a tumor suppressor. Under physiological conditions, miR-34a has an inhibitory effect on all processes related to cell proliferation by targeting many proto-oncogenes and silencing them on the post-transcriptional level. However, deregulation of miR-34a was shown to play important roles in tumorigenesis and processes associated with cancer progression, such as tumor-associated epithelial-mesenchymal transition, invasion, and metastasis. Moreover, further understanding of miR-34a molecular mechanisms in cancer are indispensable for the development of effective diagnosis and treatments. In this review, we summarized the current knowledge on miR-34a functions in human disease with an emphasis on its regulation and dysregulation, its role in human cancer, specifically head and neck squamous carcinoma and thyroid cancer, and emerging role as a disease diagnostic and prognostic biomarker and the novel therapeutic target in oncology.
- Klíčová slova
- head and neck squamous cell carcinoma, miR-34a, thyroid cancer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Attributing to their pathophysiological role and stability in biological samples, microRNAs (miRNAs) have the potential to become valuable predictive markers for non-small cell lung cancer (NSCLC). Samples of biopsy tissue constitute suitable material for miRNA profiling with the aim of predicting the effect of palliative chemotherapy. The present study group included 81 patients (74 males, 7 females, all smokers or former smokers) with the squamous cell carcinoma (SCC) histological subtype of NSCLC at a late stage (3B or 4). All patients received palliative chemotherapy based on platinum derivatives in combination with paclitaxel or gemcitabine. The expression of 17 selected miRNAs was measured by reverse transcription-quantitative polymerase chain reaction in tumor tissue macrodissected from formalin-fixed paraffin-embedded (FFPE) tissue samples. To predict the effect of palliative chemotherapy, the association between gene expression levels and overall survival (OS) time was analyzed. From the 17 miRNAs of interest, low expression levels of miR-342 and high expression levels of miR-34a and miR-224 were associated with a reduced OS time in subgroups of patients based on smoking status and treatment modality. Using cluster analysis, associations between combinations of miR-34a, -224 and -342 expression levels with patient survival were identified. The present study revealed that patients with the simultaneous high expression of miR-224 and -342 had a similar prognostic outcome to those with the low expression of miR-224 and -342, which was significantly reduced, compared with patients exhibiting high expression of either miR-224 or miR-342 with low expression of the other. We hypothesize that the effect of a particular miRNA is dependent on the expression level of other members of the miRNA network. This finding appears to complicate survival analyses based on individual miRNAs as markers. In conclusion, the present study provides evidence that specific miRNAs were associated with OS time, which may be candidate predictors for the effectiveness of palliative treatment in SCC lung cancer patients. This objective can be better achieved by combining more markers together than by using individual miRNAs.
- Klíčová slova
- biomarkers, lung cancer, microRNA, palliative treatment,
- Publikační typ
- časopisecké články MeSH