Nejvíce citovaný článek - PubMed ID 25865150
The Taiwanese fauna of the dung beetle genus Oxyomus Dejean, 1833 (Coleoptera: Scarabaeidae: Aphodiinae) is reviewed based on museum specimens and newly collected material. Four species, all endemic to Taiwan, are recognized, one of which is newly described here: O. alligator sp. nov. Remaining species are diagnosed, compared with similar relatives from outside of Taiwan, and their distribution is mapped. We show that Taiwanese Oxyomus species form three distinct morphological groups, similar to species from Japan, SE Asia and Malay Archipelago, respectively, indicating a possible composite origin of Taiwanese fauna. The species occur in submontane and montane forests at altitudes of 700-2550 m including the secondary Cryptomeria ones. Available data confirm their association with dung of various forest mammals (monkeys, muntjacs and serows), although the discovery of larvae in sifted forest leaf litter may indicate they can also develop in nutrient-rich substrate around the dung. The larva of O. alligator sp. nov. is described in detail, based on the larval specimens associated with adults by DNA barcodes. Larvae of Oxyomus alligator sp. nov. are similar to those of the European O. sylvestris (Scopoli, 1763), with important differences only found on maxilla and abdominal apex.
- Klíčová slova
- Aphodiinae, DNA barcoding, Distribution, Dung beetles, Endemism, Immature stages, New species, Oxyomus, Taiwan,
- Publikační typ
- časopisecké články MeSH
The elateroid family Lycidae is known for limited dispersal propensity and high species-level endemism. The red net-winged beetle, Dictyoptera aurora (Herbst, 1874), differs from all relatives by the range comprising almost the entire Holarctic region. Based on a five-marker phylogeny and 67 barcode entries (cox1-5' mtDNA) from the whole range, we recovered two genetically distinct species within traditionally defined D. aurora and resurrected the name D. coccinata (Say, 1835) as the oldest available synonym for Nearctic populations. Yet, no reliable morphological trait distinguishes these species except for minute differences in the male genitalia. D. coccinata is a monophylum resulting from a single Miocene dispersal event, ~15.8 million years ago, and genetic divergence implies long-term isolation by the Bering Strait. Far East Asian and west European populations are also genetically distinct, although to a lower extent. Two independent colonization events established the Fennoscandian populations after the last glacial maximum. Besides intrinsic factors, the high morphological similarity might result from stabilizing selection for shared aposematic signals. The rapidly accumulating barcode data provide valuable information on the evolutionary history and the origins of regional faunas.
- Klíčová slova
- Müllerian mimicry, aposematic signal, barcode, cryptic species, dispersal, last glacial maximum, morphological stasis, mtDNA, rRNA, taxonomy,
- Publikační typ
- časopisecké články MeSH
Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6500 terminals, ~ 1850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.
- Klíčová slova
- biodiversity, conservation, ecology, evolutionary biology, mtDNA, net-winged beetles, phylogenomics,
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- brouci klasifikace genetika MeSH
- fylogeneze * MeSH
- mitochondriální DNA genetika MeSH
- stanovení celkové genové exprese MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nová Guinea MeSH
- Názvy látek
- mitochondriální DNA MeSH
High-throughput DNA methods hold great promise for the study of the hyperdiverse arthropod fauna of the soil. We used the mitochondrial metagenomic approach to generate 39 mitochondrial genomes from adult and larval specimens of Coleoptera collected from soil samples. The mitogenomes correspond to species from the families Carabidae (6), Chrysomelidae (1), Curculionidae (9), Dermestidae (1), Elateridae (1), Latridiidae (1), Scarabaeidae (3), Silvanidae (1), Staphylinidae (12), and Tenebrionidae (4). All the mitogenomes followed the putative ancestral gene order for Coleoptera. We provide the first available mitogenome for 30 genera of Coleoptera, including endogean representatives of the genera Torneuma, Coiffaitiella, Otiorhynchus, Oligotyphlopsis, and Typhlocharis.
- Klíčová slova
- Coleoptera, endogean, mitochondrial metagenomics, next-generation sequencing, soil,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Rhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera. RESULTS: We analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov., with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification. CONCLUSIONS: Thus, Rhinorhipidae adds another example to several recently recognized ancient relict lineages which are interspersed within contemporaneous hugely species-rich lineages of Coleoptera.
- Klíčová slova
- Elateriformia, Molecular phylogeny, New superfamily, Phylotranscriptomics, Rhinorhipidae, Triassic,
- Publikační typ
- časopisecké články MeSH
The ongoing exploration of biodiversity and the implementation of new molecular tools continue to unveil hitherto unknown lineages. Here, we report the discovery of three species of neotenic beetles for which we propose the new family Iberobaeniidae. Complete mitochondrial genomes and rRNA genes recovered Iberobaeniidae as a deep branch in Elateroidea, as sister to Lycidae (net-winged beetles). Two species of the new genus Iberobaenia, Iberobaenia minuta sp. nov. and Iberobaenia lencinai sp. nov. were found in the adult stage. In a separate incidence, a related sequence was identified in bulk samples of soil invertebrates subjected to shotgun sequencing and mitogenome assembly, which was traced to a larval voucher specimen of a third species of Iberobaenia Iberobaenia shows characters shared with other elateroid neotenic lineages, including soft-bodiedness, the hypognathous head, reduced mouthparts with reduced labial palpomeres, and extremely small-bodied males without strengthening structures due to miniaturization. Molecular dating shows that Iberobaeniidae represents an ancient relict lineage originating in the Lower Jurassic, which possibly indicates a long history of neoteny, usually considered to be evolutionarily short-lived. The apparent endemism of Iberobaeniidae in the Mediterranean region highlights the importance of this biodiversity hotspot and the need for further species exploration even in the well-studied European continent.
- Klíčová slova
- biodiversity, endemism, mitogenomes, molecular phylogeny, neoteny, soil arthropods,
- MeSH
- brouci anatomie a histologie klasifikace genetika fyziologie MeSH
- fylogeneze MeSH
- mitochondriální DNA MeSH
- sekvenční analýza DNA metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Španělsko MeSH
- Názvy látek
- mitochondriální DNA MeSH