Most cited article - PubMed ID 25986035
Accumulation of energy reserves in algae: From cell cycles to biotechnological applications
Filamentous green algae of the genus Zygnema are an essential part of hydro-terrestrial ecosystems. Despite several studies on their resistance to natural stresses, little is known about the composition of their assemblages and the changes they undergo over time. Two sites at altitudes above 2200 m a.s.l. in the Austrian Alps were selected for a 2-year observation period and sampled five times. Molecular phylogenetic analysis of the 152 isolated strains of Zygnema sp. was performed based on the rbcL and trnG sequences. Seven genotypes were found at these sites during the samplings, but their proportion varied throughout the seasons. The site with a more stable water regime also had a more stable representation of genotypes, in contrast to the site with fluctuating water availability. The mats formed resistant pre-akinetes at the end of the season with reduced photosynthetic activity. Contrary to expectations, the mats were not exposed to extremely cold temperatures in winter due to snow cover. Some genotypes have been previously observed at this site, indicating that the population composition is stable. This work highlights the importance of resistant pre-akinetes in surviving winter conditions, the ability of algae to re-establish mats, and the need to address the hidden diversity of the genus Zygnema.
- Keywords
- Chlorophyll fluorescence, Cryptic diversity, Freezing, Hidden diversity, Overwintering,
- MeSH
- Ecosystem * MeSH
- Phylogeny MeSH
- Seasons MeSH
- Streptophyta * MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Austria MeSH
- Names of Substances
- Water MeSH
In recent decades, a shift has been seen in the use of light-emitting diodes over incandescent lights and compact fluorescent lamps (CFL), which eventually led to an increase in wastes of electrical equipment (WEE), especially fluorescent lamps (FLs) and CFL light bulbs. These widely used CFL lights, and their wastes are good sources of rare earth elements (REEs), which are desirable in almost every modern technology. Increased demand for REEs and their irregular supply have exerted pressure on us to seek alternative sources that may fulfill this demand in an eco-friendly manner. Bio-removal of wastes containing REEs, and their recycling may be a solution to this problem and could balance environmental and economic benefits. To address this problem, the current study focuses on the use of the extremophilic red alga, Galdieria sulphuraria, for bioaccumulation/removal of REEs from hazardous industrial wastes of CFL bulbs and the physiological response of a synchronized culture of G. sulphuraria. A CFL acid extract significantly affected growth, photosynthetic pigments, quantum yield, and cell cycle progression of this alga. A synchronous culture was able to efficiently accumulate REEs from a CFL acid extract and efficiency was increased by including two phytohormones, i.e., 6-Benzylaminopurine (BAP - Cytokinin family) and 1-Naphthaleneacetic acid (NAA - Auxin family).
- Keywords
- Galdieria sulphuraria, Rhodophyta, bio-removal, compact fluorescent lamp, extremophile, industrial wastes, plant hormones,
- Publication type
- Journal Article MeSH
The production of organic deuterated compounds in microalgal systems represents a cheaper and more versatile alternative to more complicated chemical synthesis. In the present study, we investigate the autotrophic growth of two microalgae, Chlamydomonas reinhardtii and Desmodesmus quadricauda, in medium containing high doses of deuterated water, D2O. The growth of such cultures was evaluated in the context of the intensity of incident light, since light is a critical factor in the management of autotrophic algal cultures. Deuteration increases the light sensitivity of both model organisms, resulting in increased levels of singlet oxygen and poorer photosynthetic performance. Our results also show a slowdown in growth and cell division processes with increasing D2O concentrations. At the same time, impaired cell division leads to cell enlargement and accumulation of highly deuterated compounds, especially energy-storing molecules. Thus, considering the specifics of highly deuterated cultures and using the growth conditions proposed in this study, it is possible to obtain highly deuterated algal biomass, which could be a valuable source of deuterated organic compounds.
- Keywords
- cell division, deuterated compounds, deuterium, light intensity, microalgae, physical stress,
- Publication type
- Journal Article MeSH
In streptophytic green algae in the genus Zygnema, pre-akinete formation is considered a key survival strategy under extreme environmental conditions in alpine and polar regions. The transition from young, dividing cells to pre-akinetes is associated with morphological changes and the accumulation of storage products. Understanding the underlying metabolic changes could provide insights into survival strategies in polar habitats. Here, GC-MS-based metabolite profiling was used to study the metabolic signature associated with pre-akinete formation in Zygnema sp. from polar regions under laboratory conditions, induced by water and nutrient depletion, or collected in the field. Light microscopy and TEM revealed drastic changes in chloroplast morphology and ultrastructure, degradation of starch grains, and accumulation of lipid bodies in pre-akinetes. Accordingly, the metabolite profiles upon pre-akinete formation reflected a gradual shift in metabolic activity. Compared with young cells, pre-akinetes showed an overall reduction in primary metabolites such as amino acids and intermediates of the tricarboxylic acid (TCA) cycle, consistent with a lower metabolic turnover, while they accumulated lipids and oligosaccharides. Overall, the transition to the pre-akinete stage involves re-allocation of photosynthetically fixed energy into storage instead of growth, supporting survival of extreme environmental conditions.
- Keywords
- Zygnema, Abiotic stress, green algae, metabolomics, pre-akinete, streptophyte,
- MeSH
- Chlorophyta * MeSH
- Ecosystem MeSH
- Lipid Droplets MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Red mud is a by-product of alumina production containing lanthanides. Growth of green microalgae on red mud and the intracellular accumulation of lanthanides was tested. The best growing species was Desmodesmus quadricauda (2.71 cell number doublings/day), which accumulated lanthanides to the highest level (27.3 mg/kg/day), if compared with Chlamydomonas reinhardtii and Parachlorella kessleri (2.50, 2.37 cell number doublings and 24.5, 12.5 mg/kg per day, respectively). With increasing concentrations of red mud, the growth rate decreased (2.71, 2.62, 2.43 cell number doublings/day) due to increased shadowing of cells by undissolved red mud particles. The accumulated lanthanide content, however, increased in the most efficient alga Desmodesmus quadricauda within 2 days from zero in red-mud free culture to 12.4, 39.0, 54.5 mg/kg of dry mass at red mud concentrations of 0.03, 0.05 and 0.1%, respectively. Red mud alleviated the metal starvation caused by cultivation in incomplete nutrient medium without added microelements. Moreover, the proportion of lanthanides in algae grown in red mud were about 250, 138, 117% higher than in culture grown in complete nutrient medium at red mud concentrations of 0.03, 0.05, 0.1%. Thus, green algae are prospective vehicles for bio-mining or bio-leaching of lanthanides from red mud.
- Keywords
- bio-mining, lanthanides, microalgae, recovery, red mud, toxicity,
- MeSH
- Bioreactors MeSH
- Chlamydomonas reinhardtii MeSH
- Lanthanoid Series Elements * chemistry MeSH
- Microbiological Techniques MeSH
- Microalgae * MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lanthanoid Series Elements * MeSH
Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions.
- Keywords
- desiccation stress, fatty acid methyl ester, lipids, nitrogen starvation, polar green microalgae,
- MeSH
- Nitrogen metabolism MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Lipid Droplets metabolism MeSH
- Fatty Acids chemistry metabolism MeSH
- Osmotic Pressure MeSH
- Streptophyta chemistry genetics metabolism radiation effects MeSH
- Ultraviolet Rays MeSH
- Desiccation MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Antarctic Regions MeSH
- Arctic Regions MeSH
- Names of Substances
- Nitrogen MeSH
- Photosystem II Protein Complex MeSH
- Fatty Acids MeSH
Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism.
- MeSH
- Staining and Labeling MeSH
- Models, Biological MeSH
- Chlorophyta cytology growth & development metabolism ultrastructure MeSH
- Electrons * MeSH
- Phosphates metabolism MeSH
- Lipids chemistry MeSH
- Polyphosphates metabolism MeSH
- Sequence Analysis, RNA MeSH
- Sulfur metabolism MeSH
- Transcriptome genetics MeSH
- Imaging, Three-Dimensional MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phosphates MeSH
- Lipids MeSH
- Polyphosphates MeSH
- Sulfur MeSH
BACKGROUND: Algae have attracted attention as sustainable producers of lipid-containing biomass for food, animal feed, and for biofuels. Parachlorella kessleri, a unicellular green alga belonging to the class Trebouxiophyceae, achieves very high biomass, lipid, and starch productivity levels. However, further biotechnological exploitation has been hampered by a lack of genomic information. RESULTS: Here, we sequenced the whole genome and transcriptome, and analyzed the behavior of P. kessleri NIES-2152 under lipid production-inducing conditions. The assembly includes 13,057 protein-coding genes in a 62.5-Mbp nuclear genome. Under conditions of sulfur deprivation, lipid accumulation was correlated with the transcriptomic induction of enzymes involved in sulfur metabolism, triacylglycerol (TAG) synthesis, autophagy, and remodeling of light-harvesting complexes. CONCLUSIONS: Three-dimensional transmission electron microscopy (3D-TEM) revealed extensive alterations in cellular anatomy accompanying lipid hyperaccumulation. The present 3D-TEM results, together with transcriptomic data support the finding that upregulation of TAG synthesis and autophagy are potential key mediators of the hyperaccumulation of lipids under conditions of nutrient stress.
- Keywords
- 3D-TEM, Genome, Green alga, Lipid body, Parachlorella kessleri, RNA-seq, Transcriptome, Whole-genome sequence,
- Publication type
- Journal Article MeSH